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Table 2-11: Studies investigating ankle muscle strength (Cont.). 

 

 

A blank cell indicates that the data were not provided. 
FI, functional instability; Con, concentric; Ecc, eccentric 
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Table 2-12: Studies investigating hip and knee muscle strength. 

 

 

 

A blank cell indicates that the data were not provided. 
FI, functional instability; Con, concentric; Ecc, eccentric 
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CHAPTER 3 

PREDICTIVE FACTORS OF LATERAL ANKLE SPRAIN 
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CHAPTER 3-1 

Intrinsic Predictive Factors of Noncontact Lateral Ankle Sprain in 
Collegiate Athletes: A Case-Control Study 

 

Introduction 

 LAS is one of the most common injuries in competitive sports and recreational activities. 

Approximately 23,000 cases of LAS occur daily and the annual indirect medical cost of treating 

LAS is $1.1 billion in the United States.(Kannus and Renstrom, 1991; McGuine and Keene, 2006; 

McKeon and Mattacola, 2008) The rate of recurrent ankle sprain is more than 40%. Predominant 

symptoms are pain and crepitus for the ankle with 1 to 3 re-injuries, and unstable feeling for the 

ankle with 4 or more re-injuries.(Yeung et al., 1994) Thus, repeated ankle sprain leads to 

CAI.(Hertel, 2002; Verhagen et al., 1995; Yeung et al., 1994) Furthermore, the development of 

osteoarthritis in patients with longstanding CAI is thought to be about 80% and some cases require 

surgical treatment.(Harrington, 1979; Lofvenberg et al., 1994; Povacz et al., 1998) Therefore, the 

determination of factors that predict LAS and the development of an effective LAS prevention 

program are required. 

 Many studies have been performed to determine whether certain intrinsic factors can 

predict LAS. The predictive intrinsic factors of LAS proposed by these studies include anatomic 
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characteristics,(de Noronha et al., 2012; Milgrom et al., 1991) functional deficits in isokinetic 

strength,(Beynnon et al., 2001; McHugh et al., 2006) flexibility,(Baumhauer et al., 1995; Hiller et 

al., 2008) joint position sense,(Watson, 1999; Willems et al., 2005b) muscle reaction 

time,(Beynnon et al., 2001) balance-postural sway,(Willems et al., 2005c) gait mechanics,(Willems 

et al., 2005a) limb dominance,(Beynnon et al., 2001; Fousekis et al., 2012) previous ankle 

sprains,(Baumhauer et al., 1995; McHugh et al., 2006) weight, and body mass index 

(BMI).(Milgrom et al., 1991; Tyler et al., 2006) However, no consensus has been reached on the 

predictive intrinsic factors. Moreover, most previous studies have not distinguished between 

contact and noncontact injuries. Though injury mechanisms with different risk factors should be 

distinguished in prospective cohort studies of sports injuries,(Sadoghi et al., 2012; Walden et al., 

2012) only a few studies have investigated factors specifically predictive of noncontact 

LAS.(Fousekis et al., 2012; Hiller et al., 2008; McHugh et al., 2006; Tyler et al., 2006) These 

studies suggested that previous ankle sprain(Hiller et al., 2008; McHugh et al., 2006; Tyler et al., 

2006) or BMI(Fousekis et al., 2012; McHugh et al., 2006; Tyler et al., 2006) can predict noncontact 

LAS, while Fousekis et al.(Fousekis et al., 2012) reported that previous ankle sprain and BMI do 

not predict noncontact LAS. Additionally, flexibility,(Fousekis et al., 2012; Hiller et al., 2008) 

ankle joint instability,(Fousekis et al., 2012; Hiller et al., 2008) generalized hypermobility,(Hiller et 
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al., 2008) muscle strength,(Fousekis et al., 2012; McHugh et al., 2006) and static balance(Hiller et 

al., 2008) were not identified as predictive factors. Therefore, the intrinsic predictive factors in 

noncontact LAS are still undefined and further research is needed. 

 Balance board training in a single-limb stance decreases the incidence of recurrent ankle 

sprain in athletes with a history of previous ankle sprain.(Bahr et al., 1997a; McGuine and Keene, 

2006; McKeon and Mattacola, 2008; Tropp et al., 1985a; Verhagen et al., 2004) In contrast, it does 

not prevent initial ankle sprain in athletes without previous ankle sprain.(McGuine and Keene, 

2006; Verhagen et al., 2004) Because single-leg balance is disturbed in patients with CAI,(McKeon 

and Hertel, 2008a; Mitchell et al., 2008b; Wikstrom et al., 2007) balance training was speculated to 

improve proprioception, thereby protecting against recurrent injury.(McHugh et al., 2006) No 

effective training to prevent initial ankle sprain has been proposed at present, and potential 

predictive factors differentiating initial and recurrent LAS should be identified. Talocrural stability 

is supported by bony conformity, rear foot alignment, flexibility, and neuromuscular 

control,(Hayes et al., 2006; Hertel, 2002) among which only the neuromuscular components have 

been studied in the literature. Therefore, the purpose of this case-control study was to identify the 

predictive factors of initial and recurrent noncontact LAS in collegiate athletes. We hypothesized 

bony conformity and flexibility of the talocrural joint or rear foot alignment would predict initial 
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LAS occurs during ankle internal rotation in dorsiflexion.(Fong et al., 2012; Fong et al., 2009; Mok 

et al., 2011) The data suggest that deficiency of talocrural stability due to bony conformity in 

dorsiflexion may be present and the deficiency may be related to the occurrence of LAS. However, 

there is no standardized examination for the bony stability of the talocrural joint. Therefore, we 

used two novel tests, the mortise test and NMM distance measurement, to assess bony stability at 

maximum ankle dorsiflexion.  

In the mortise test, an athlete was instructed to relax in the prone position and flex the 

knee at 90°. An examiner held and stabilized the lower leg with one hand, using the other hand to 

apply force at the ball of the foot that maintained maximum dorsiflexion of the ankle and to apply 

additional internal rotation torque (Figure 3-2d). The test result is considered “positive” if the ankle 

inverts and internally rotates without a bony end feel and with a yielding sensation, considered 

“questionable” if the ankle inverts with a slight bony end feel, and considered “negative” if no 

inversion occurs. The positive and questionable results were classified as unstable (+), while the 

negative result was classified as stable (-). The reliability of the mortise test was good, with an 

inter-tester reliability of к = 0.783. 

To measure the NMM distance, an athlete was instructed to relax in the prone position 

and flex the knee at 90°. An examiner held the lower leg with one hand and applied a force on the 
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plantar side of the forefoot until the ankle reached maximal dorsiflexion, without restricting the 

ankle’s horizontal plane motion. Once the maximal dorsiflexion of the ankle was established, the 

distance between the most prominent points of the navicular tubercle and the medial malleolus was 

measured with a digital caliper (Figure 3-2e). The reliability of this measurement was excellent, 

with an intra-tester ICC (1, 1) of 0.857 and an inter-tester ICC (2, 2) of 0.821.   

 

 The measurements from all the athletes who completed this study, including mass, 

height, weight-bearing dorsiflexion ROM, LHA (prone/standing), foot internal rotation angle in 

plantar flexion, mortise test assessment, and NMM distance, were used to create a predictive model 

using a forward stepwise Cox regression analysis. Because statistically significant differences were 

observed between the right and left ankles of the Control group (p < 0.05), measurement data 

relevant to a sprained ankle in the Injury group matched to measurements collected for a random 

ankle in the Control group was used in the final model. The criterion to retain a variable in the 

model was a p-value less than 0.05, and the criterion for removal was a p-value greater than 0.10. 

The incidence of injury was calculated as injuries per 1000 athlete-exposures. All data were 

analyzed with the Statistical Program for the Social Sciences software (PASW Statistics 18, SPSS 

Statistical Analysis 
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Inc., Chicago, USA). 

 

Results 

During the follow-up period, 22 (eight badminton players, eight soccer players, and six 

baseball players) of the 191 initial participants dropped out of the study and the remaining 169 

athletes (145 males, 24 females) completed the study. Of the athletes that did not complete the 

study, 21 quit the club due to unrelated reasons and one suffered a contact ankle sprain. Of those 

who completed the study, 125 athletes (74.0%) had a history of ankle sprain prior to the 

participation in this study. During the observational period, 16 athletes (9.47%) suffered noncontact 

LAS, including four initial cases of LAS and 12 recurrences (Figure 3-1). The injury incidence of 

noncontact LAS was 0.58 per 1000 athlete-exposures. That amount was male basketball 1.04, male 

badminton 0.60, female badminton 0.80, female volleyball 0.45, male soccer 0.90, and male 

baseball 0.37 per 1000 athlete-exposures. 

The measurements gathered from the 44 athletes without previous ankle sprain were used 

in a Cox regression analysis of the Injury and Control groups, which demonstrated the NMM 

distance was predictive of an initial noncontact LAS (Table 3-1). The hazard ratio (HR) estimated 

indicated that athletes with an NMM distance greater than 4.65 cm were 4.14 times as likely to 
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suffer an initial noncontact LAS as athletes with a shorter NMM distance (95% confidence interval 

(CI) [1.12, 14.30]) (Table 3-2). Figure 3-3 shows the survival curves based on the NMM distance. 

Because the cut-off value of NMM distance was 4.65 cm (sensitivity; 0.75, specificity; 0.88) by a 

ROC curve (Figure 3-4), the athletes were categorized into two groups; (A) NMM less than 4.65 

cm (35 athletes) and (B) NMM greater than or equal to 4.65 cm (9 athletes). Group A exhibited a 

97.1% survival rate at the end of the follow-up, while the group B exhibited a 66.7% survival rate, 

where “survival” is defined as free from ankle sprain. 

The measurements taken from the 125 athletes with a previous ankle sprain were used in 

a Cox regression analysis of the Injury and Control groups, which demonstrated weight-bearing 

dorsiflexion ROM was predictive of a recurrent noncontact LAS (Table 3-3). The HR estimated 

indicated that athletes with a weight-bearing dorsiflexion ROM greater than 49.5° were 1.12 times 

as likely to suffer a recurrent noncontact LAS as athletes with a lower ROM (95% CI [1.05, 1.20]) 

(Table 3-4). Figure 3-5 shows the survival curve based on the weight-bearing dorsiflexion ROM. 

Because the cut-off value of weight-bearing dorsiflexion ROM was 49.5° (sensitivity; 0.75, 

specificity; 0.86) by a ROC curve (Figure 3-6), and the average weight-bearing dorsiflexion ROM 

in this study and the previous large prospective study was 45 ± 4°,(Pope et al., 1998) the athletes’ 

outcomes were categorized into three groups according to their weight-bearing dorsiflexion ROM: 
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(C) less than 41° (50 athletes), (D) 41 to 49.5° (50 athletes), (E) more than 49.5° (25 athletes). 

Group D exhibited the highest survival rate (100.0%), followed by Group C (94.0%) and the Group 

E (64.0%), where “survival” is defined as free from ankle sprain. 

 

Discussion 

 The purpose of this study was to identify predictive factors of initial and recurrent 

noncontact LAS in collegiate athletes. The incidence of noncontact LAS during the 48-week 

monitoring period of 169 collegiate athletes in this study was 0.58 per 1000 athlete-exposures. An 

NMM distance greater than 4.65 cm predicted initial noncontact LAS, and a mediocre 

weight-bearing dorsiflexion ROM (more than 49.5°) predicted recurrent noncontact LAS. 

 We observed an incidence of noncontact LAS of 0.58 per 1000 athlete-exposures. This 

incidence was much lower than the incidences of 1.13 and 1.08 per 1000 athlete-exposures 

reported by McHugh et al.(McHugh et al., 2006) and Tyler et al.,(Tyler et al., 2006) respectively. A 

reason for this discrepancy may include the differences in sports played by the athletes in each 

study. According to a large epidemiological study, the incidence of ankle sprain is high in soccer 

and basketball and low in baseball.(Hootman et al., 2007) Previous studies have focused on high 

risk sports including high school soccer(Tyler et al., 2006) and high school soccer and 
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basketball.(McHugh et al., 2006) In contrast, nearly half of athletes in this study participated in low 

risk sports such as baseball (0.37 per 1000 athlete-exposures). Similarly, a study of adolescent 

ballet dancers has shown that the incidence of noncontact LAS was 0.21 per 1000 

athlete-exposures.(Hiller et al., 2008) Therefore, the type of sport may affect the incidence of 

noncontact LAS. 

 Athletes with an NMM distance greater than 4.65 cm at maximum ankle dorsiflexion 

were at higher risk of an initial noncontact LAS. The location of the navicular tubercle was used as 

a substitute landmark to assess the location of the head of the talus in the sagittal plane. Greater 

NMM distance indicates the medial aspect of the talus shifts anterior during dorsiflexion compared 

to an ankle with a smaller NMM distance. An ankle with greater NMM distance typically 

demonstrates external rotation of the talus near the maximal dorsiflexion, suggesting the gliding 

motion of talocrural joint is limited medially, but not laterally, near the maximal dorsiflexion. This 

limit in motion may reduce bony conformity at maximal talocrural dorsiflexion, resulting in the 

higher incidence of initial LAS. Because manual posterior gliding is reportedly effective for 

functional recovery of joints involving CAI,(Hoch et al., 2012a; Hoch and McKeon, 2010, 2011a; 

Vicenzino et al., 2006) normalizing talar posterior glide during ankle dorsiflexion may decrease the 

incidence of noncontact LAS. An association between the NMM distance and talar posterior glide 
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should be investigated in the future. Although a standardized method of assessing the bony 

conformity of the talocrural joint at maximal dorsiflexion has not been established, the NMM 

distance may provide information on talocrural abnormal kinematics predicting initial LAS.  

 Several studies have reported that a deficit in ankle dorsiflexion ROM is a significant 

predictor of LAS.(Pope et al., 1998; Willems et al., 2005b) In a study of army recruits, Pope et 

al.(Pope et al., 1998) showed that the least flexible ankle (34° dorsiflexion ROM) has five times the 

risk of LAS compared with ankles of average flexibility (45 ± 4° dorsiflexion ROM). Willems et 

al.(Willems et al., 2005c) showed that decreased ankle dorsiflexion ROM during knee extension 

increases the risk of LAS in male collegiate students. However, many studies have failed to 

demonstrate an association between a deficit in ankle dorsiflexion ROM and the occurrence of 

LAS.(Baumhauer et al., 1995; Beynnon et al., 2001; de Noronha et al., 2012; Willems et al., 2005c) 

Also, a few studies have failed to show that a deficit in ankle dorsiflexion ROM or a difference in 

the right and left ankle dorsiflexion ROM are predicting factors for noncontact LAS.(Fousekis et 

al., 2012; Hiller et al., 2008) Interestingly, we observed that ankles with mediocre weight-bearing 

dorsiflexion ROM (41 to 49.5°) are at low risk of recurrent LAS. Recent kinematic studies 

suggested that LAS occurs during slight plantar flexion to slight dorsiflexion,(Fong et al., 2012; 

Mok et al., 2011) suggesting LAS can occur during dorsiflexion. No explanation for this result 
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exists in the literature and greater attention should be directed to the injury mechanism of LAS 

occurring during dorsiflexion. 

 This study is a case-control study utilizing highly reliable measurement techniques. 

Athlete-exposures and injury data were collected on campus by a physical therapist, which further 

improves data reliability. However, this study involved only collegiate athletes involved in a 

limited number of sports; thus, these results may not be applicable to adolescent athletes or older 

athletes, nor to the athletes participating in other sports. This study was also methodologically 

limited by an insufficient number of subjects, especially athletes without previous ankle sprain. 

Accordingly, we adopted the forward stepwise analysis to prevent a reduced goodness of fit of the 

predictive model; the final events-to-predictors ratio was 4.0 (initial LAS) and 12.0 (recurrent 

LAS). These ratios are not low compared to the ratios of previous noncontact LAS studies, 4.8 and 

3 in the study by Tyler et al.,(Tyler et al., 2006) 2.2 in the study by McHugh,(McHugh et al., 2006) 

and 3.4 in the study by Fousekis et al.(Fousekis et al., 2012) Therefore, our study was 

methodologically comparable to previous relevant studies. 

 During the 48 week follow-up of 169 collegiate athletes, the incidence of noncontact 

LAS was 0.58 per 1000 athlete-exposures. The NMM distance predicted the occurrence of initial 

noncontact LAS, and a mediocre weight-bearing dorsiflexion ROM lowered the risk of recurrent 
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noncontact LAS. This study, to our knowledge, is the first study to distinguish predictive factors for 

initial LAS from those for recurrent noncontact LAS. We feel that the NMM distance can be 

reduced by improving the flexibility of surrounding tissues such as the skin, achilles tendon and/or 

the flexor retinaculum. A future randomized control study may focus on the effects of an 

intervention to improve bony conformity at maximal dorsiflexion on preventing LAS. 
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Figure 3-1: Flowchart of the protocol of this study. 



84 

 

 

 

 

 

 

 

 

 

Figure 3-2: Demonstration of the methods used for baseline measurements. 

(a) weightbearing dorsiflexion ROM 

(b) LHA (prone/standing) 

(c) foot internal rotation angle in plantar flexion 

(d) assessment by the mortise test (white arrow; internal rotation stress) 

(e) NMM distance (black circle; most prominent points of the navicular tubercle and medial malleolus) 
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Figure 3-3: Survival curves for athletes sorted by NMM distance based on the Cox regression 

model. 

The grey dotted line represents athletes with NMM distance < 4.65 cm (Group A); the black line represents 

athletes with NMM distance ≥ 4.65 cm (Group B). 
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Figure 3-4: The ROC curve for athletes sorted by NMM distance. 

The cut-off value is 4.65 cm (sensitivity; 0.75, specificity; 0.88). 
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Figure 3-5: Survival curves for athletes sorted by weightbearing dorsiflexion ROM based on the 

Cox regression model. 

The light grey dotted line represents athletes with dorsiflexion ROM < 41º (Group C).  

The dark grey dotted line represents athletes with dorsiflexion ROM 41 to 49.5º (Group D).  

The black line represents athletes with dorsiflexion ROM > 49.5º (Group E). 
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Figure 3-6: The ROC curve for athletes sorted by weight-bearing dorsiflexion ROM. 

The cut-off value is 49.5° (sensitivity; 0.75, specificity; 0.86). 
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Table 3-1: Intrinsic predictive factors analyzed in athletes without previous ankle sprain, divided 

into Control and Injury groups. 

 

 

 

 

 

 

 

 
The Control group includes athletes who suffered no ankle sprain during the study period; the Injury group 
includes athletes who suffered LAS.  
Data are presented as the mean ± standard deviation. *: p < 0.05 
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Table 3-2: Cox regression analysis of athletes without previous ankle sprain using the forward 

stepwise method. 
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Table 3-3: Intrinsic factors analyzed in athletes with previous ankle sprain, divided into Control and 

Injury groups. 

 

 

 

 

 

 

The Control group includes athletes who suffered no ankle sprain during the study period; the Injury group 
includes athletes who suffered LAS.  
Data are presented as the mean ± standard deviation. *: p < 0.05 
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Table 3-4: Cox regression analysis of athletes with previous ankle sprain using the forward 

stepwise method. 
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CHAPTER 4 

ABNORMAL KINEMATICS OF CHRONIC ANKLE INSTABILITY 
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CHAPTER 4-1 

In Vivo Kinematics of the Talocrural and Subtalar Joints with Chronic 
Ankle Instability During Weightbearing Ankle Rotation 

 

Introduction 

 LAS are one of the most common injuries in sports and recreational activities and are 

often associated with persistent symptoms following injury.(Fong et al., 2007) Athletes with LAS 

often return to sports without being evaluated by a medical provider,(McKeon and Mattacola, 

2008) and recurrence rates for LAS have been reported to be as high as 56 to 74%.(McKay et al., 

2001; Nielsen and Yde, 1989; Yeung et al., 1994) Common symptoms reported following one to 

three LAS injuries are ankle pain and crepitus, but after four or more LAS injuries, instability 

symptoms become frequently reported(Yeung et al., 1994) and CAI may develop.(Hertel, 2002) 

Previously described classifications for CAI have divided this condition into 

MAI(Freeman, 1965) and FAI(Hertel, 2002). A clinical diagnosis of MAI is made using stress 

radiographs to identify increased talar anterior translation and/or increased talar varus.(Langer et al., 

2007) These imaging studies, however, may not identify generalized laxity of the talocrural and/or 

subtalar joints. FAI is diagnosed when instability symptoms are reported in the absence of 

instability signs on stress radiographs. The underlying biomechanics responsible for instability in 
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FAI are not well-defined or easily identified.(Hertel, 2008; McKeon and Mattacola, 2008) Previous 

studies of patients with FAI have reported increased ankle inversion during walking compared to 

normal controls.(Delahunt et al., 2006a; Monaghan et al., 2006) These results suggest the presence 

of abnormal ankle kinematics in cases of FAI, with further analysis needed to further characterize 

these abnormalities and identify effective treatments.  

Recent biomechanical studies have used motion-based image-matching techniques to 

evaluate LAS mechanics, and the results of these reports suggest LAS may occur with ankle 

internal rotation, or with ankle inversion in either dorsiflexion or plantar flexion.(Fong et al., 2012; 

Fong et al., 2009; Mok et al., 2011) However, these in vivo kinematic studies did not evaluate the 

kinematics of the talocrural and subtalar joints separately.(Shultz et al., 2011) Maximal ankle 

dorsiflexion is considered stable due to bony conformity that exists between the talus and mortise 

in this position, which is called the “close-packed position”.(Hayes et al., 2006; Stormont et al., 

1985) In contrast, during ankle plantarflexion, the talocrural joint becomes less intrinsically stable, 

since the narrow posterior trochlea fits loosely in the mortise in this position. Using a 3D-to-2D 

registration technique, Caputo et al.(Caputo et al., 2009) have found that in cases of MAI, 

increased talocrural anterior translation and internal rotation correspond to increased the body 

weight loading. However, although subtalar instability is also thought to contribute to the 
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symptoms of FAI,(Barg et al., 2012; Hentges and Lee, 2011; Karlsson et al., 1997; Weindel et al., 

2010) there exists limited information on the mechanics of the subtalar joint in this condition. 

Recent in vivo studies have reported the kinematics of the normal subtalar joint.(de Asla et al., 

2006; Goto et al., 2009; Sheehan et al., 2007; Yamaguchi et al., 2009) However, only one study in 

the literature has focused on the altered kinematics of the subtalar joint in FAI. This study found 

increased subtalar internal rotation in ankle dorsiflexion and internal rotation under quasi-static test 

conditions.(Kobayashi et al., 2013a) Abnormalities of the dynamic kinematics of the talocrural and 

subtalar joints in FAI remain to be further characterized. 

 Given the need for further understanding of the contributions of the talocrural and 

subtalar joints to instability symptoms in CAI, this study was undertaken to dynamically evaluate 

the relative movements of these articulations and to determine if abnormal kinematics exist in the 

talocrural and subtalar joints during weightbearing ankle internal rotation in patients with CAI. In 

this study, we used a 3D-to-2D registration technique to evaluate the dynamic kinematics of the 

talocrural and subtalar joints in patients with unilateral CAI. We hypothesized that 1) during ankle 

dorsiflexion and internal rotation, greater internal rotation of the subtalar joint would be observed 

in CAI joints compared to contralateral, unaffected joints, and 2) during ankle plantar flexion and 

internal rotation, greater internal rotation and anterior translation of the talocrural joint would be 
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observed in CAI joints compared to contralateral, unaffected joints. 

 

Methods 

 This protocol was approved the IRB of Yokohama Sports Medical Center prior to the 

initiation of the study. Subjects were recruited from Yokohama Sports Medical Center. Informed 

consent was obtained from all subjects prior to participation.  

Subjects 

Inclusion criteria for this study were 1) male gender; 2) a history of two or more unilateral 

LAS with no history of injury to the contralateral ankle; 3) no history of other medical or 

rheumatologic conditions; 4) at least five reported episodes of giving way and a reported ongoing 

tendency for the previously injured ankle to give way during sporting activities. Exclusion criteria 

were 1) LAS or giving-ways occurring in the preceding six weeks; 2) ankle swelling and/or pain 

occurring in the preceding three months; 3) a history of other lower extremity injury occurring in 

the preceding three months or with effects persistent within the last three months; and 4) prior 

physical therapy treatment including balance exercises for the affected ankle.  

Fourteen male subjects participated in this study (mean ± SD age 21.1 ± 2.5 years; ten right, four 

left). The average length of time since last LAS was 20.4 ± 12.1 months. 
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 Stress radiographs of the bilateral talocrural joints were obtained for all subjects. 

Mechanical instability on stress radiographs was defined as the presence of greater than 3 mm 

translation with anterior drawer testing or greater than 3º of talar tilt with stress testing(

Stress radiography 

Langer et 

al., 2007). All radiographs were analyzed by one researcher. 

  

 Dynamic ankle motion was imaged using single-plane lateral fluoroscopy (Dyna Direct, 

Toshiba Medical Systems Corp., Tochigi, Japan). For each subject, motion sequences were 

recorded for both the ankle with CAI and the uninjured contralateral side. Fluoroscopy was 

performed with a sampling frequency of 7.5 Hz. An examiner instructed subjects on the testing 

procedures and measured ankle positions prior to data collection. During fluoroscopic imaging, 

subjects stood in a lunge position with the forward foot fixed on a tilted footplate on a custom 

automated turntable. Specially designed footplates were used to allow for data collection with the 

ankle positioned in 20º dorsiflexion and 20º plantar flexion. Prior to data collection, equal 

distribution of body weight between the two lower extremities was confirmed using a scale. During 

Fluoroscopy 
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testing, the turntable alternately rotated at a constant speed within an arc determined by a pre-set 

resisting torque (10Nm) of so that images were obtained as the ankle cycled passively through two 

internal and external rotation (Figure 4-1).    

 

 For all subjects, CT imaging was obtained of both lower extremities (Zomatom plus-4 

VZ, Siemens, Munich, Germany) at a 1.0 mm slice pitch, spanning from the distal 100 mm of the 

tibial plafond to the distal extent of the calcaneus. Geometric bone models of the ankle mortise, 

talus, and calcaneus were then created from these CT images for each patient. Exterior cortical 

bone edges in the images were segmented using commercial software (3D-Doctor, Able Software, 

Lexington, USA), and these point clouds were converted into polygonal surface 

models.(

CT imaging and geometric bone models 

Kobayashi et al., 2013a; Yamaguchi et al., 2009) Anatomic coordinate systems were then 

embedded in each bone model using a previously described method and custom software (VH 

KneeFitter) (Figure 4-2).(Kobayashi et al., 2013a; Yamaguchi et al., 2009)   

 

 Six-degrees-of-freedom in vivo positions and orientations of the ankle mortise, talus, 

3D-to-2D registration technique 
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and calcaneus were determined using a published 3D-to-2D registration technique and custom 

JointTrack software.(Banks and Hodge, 1996; Yamaguchi et al., 2009) According to the previously 

published technique, fluoroscopic images were matched with the geometric bone models using 

manual matching followed by automated matching utilizing a nonlinear least-squares 

technique.(Banks and Hodge, 1996; Moro-oka et al., 2007) Kinematics were determined from the 

six-degrees-of-freedom positions and orientations of each bone model using Cardan 

angles.(Tupling and Pierrynowski, 1987)   

  

 Kinematics of the talocrural joint, the subtalar joint, and the AJC were expressed as the 

motion of the talar origin relative to the tibial coordinate system, the motion of the calcaneal origin 

relative to the talar coordinate system, and the motion of the calcaneal origin relative to the tibial 

coordinate system, respectively. Inversion-eversion was defined by rotation around the 

anteroposterior axis, internal-external rotation was defined by rotation around the superoinferior 

axis, and plantar flexion-dorsiflexion was defined by rotation around the mediolateral axis. 

Outcome measures and statistics 

Kinematics were compared between ankles with CAI and the contralateral unaffected ankles in 

positions of 20° dorsiflexion and 20° plantarflexion. The joint position of the unaffected ankle in 
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standing was defined as 0º AJC rotation, and kinematic data were compared for the arc of motion 

from 7º AJC external rotation to 7º AJC internal rotation (+; internal rotation, -; external rotation), 

which range was obtained of all subjects data. Kinematic data were compared using the Wilcoxon 

rank sum test. All data were analyzed using Statistical Program for the Social Sciences software 

(PASW Statistics 18, SPSS Inc., Chicago, USA). Differences were considered statistically 

significant when p < 0.05 with applying the Holm correction. 

 

Results 

 Stress radiographs revealed mechanical instability of the talocrural joint in three subjects. 

One subject had a positive anterior drawer, and two subjects demonstrated talar tilt with stress 

maneuvers. Other subjects were normal, and none the subjects presented with any degenerative 

changes. 

Stress radiography 

 

 With the ankle in 20° dorsiflexion, no significant differences between CAI and 

unaffected ankles were found in the kinematics of the talocrural joint, subtalar joint, or AJC during 

Ankle kinematics in dorsiflexion 
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rotation. There was no statistical difference observed in AJC dorsiflexion angle between the CAI 

and unaffected ankles during testing.   

 

 With the ankle in 20° plantar flexion, ankles with CAI demonstrated significantly 

increased anterior translation of the talocrural joint within an AJC arc of motion from 5º to 7º and 

significantly decreased internal rotation of the talocrural joint within an AJC arc of motion from -1º 

to 5º AJC (Figures 4-3, 4-4). With respect to subtalar joint kinematics, CAI joints demonstrated 

significantly increased internal rotation of the subtalar joint within an AJC arc of motion from -1º 

to 3º (Figure 4-5). There was no statistical difference observed in AJC plantar flexion angle 

between the CAI and unaffected ankles during the testing.   

Ankle kinematics in plantar flexion 

 

Discussion 

 The objective of this study was to investigate alterations in ankle kinematics during 

weightbearing ankle internal rotation in CAI. Ankle kinematics were investigated in positions of 

dorsiflexion and plantar flexion. The results of this study demonstrated no significant differences in 

kinematics between CAI and unaffected ankles in dorsiflexion. In plantar flexion, CAI ankles 
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demonstrated significantly increased anterior translation of the talocrural joint within an AJC arc of 

motion from 5º to 7º and significantly decreased internal rotation of the talocrural joint within an 

AJC arc of motion from -1º to 5º In addition, CAI joints demonstrated significantly increased 

internal rotation of the subtalar joint within an AJC arc of motion from -1º to 3º. No kinematic 

differences were observed between CAI and unaffected ankles with AJC external rotation in either 

dorsiflexion or plantar flexion.   

 This study is the first to report abnormal subtalar kinematics during in vivo 

weightbearing dynamic internal rotation in CAI subjects. Internal rotation of the subtalar joint 

during ankle plantar flexion has been reported in a recent in vivo study of normal ankle joints.(de 

Asla et al., 2006) In an in vitro study, Weindel et al.(Weindel et al., 2010) found that dissection of 

the interosseous talocalcaneal ligament, lateral talocalcaneal ligament, or calcaneofibular ligament 

resulted in a significant increases in subtalar internal rotation. The results of the present study, 

which demonstrate altered subtalar kinematics in CAI, are consistent with these prior studies and 

confirm the importance of subtalar motion in normal ankle kinematics.(Weindel et al., 2010) These 

kinematic alterations are not apparent on standard stress radiographs(Langer et al., 2007) but may 

contribute to the symptoms of FAI. In the setting of LAS, injury to the stabilizing ligaments of the 

lateral subtalar joint (in particular, the interosseous talocalcaneal ligament) is a known and reported 
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complication.(DiGiovanni et al., 2004; Harper, 1991) Based on the results of this kinematic study, 

the finding of increased subtalar internal rotation in the CAI joints may represent dysfunction of the 

subtalar stabilizing ligaments following injury. We therefore suggest based on these results that 

some symptoms in FAI may also result from mechanical instability of the subtalar joint that is not 

detected by talocrural joint stress radiography. 

 Previous studies have reported increased talocrural anterior translation after LAS,(Bahr 

et al., 1997b; Caputo et al., 2009; Wainright et al., 2012) and this finding was supported by the 

results of the present study. In contrast to these earlier reports,(Caputo et al., 2009; Wainright et al., 

2012) however, we found in this study that talocrural internal rotation was decreased, not increased, 

in AJC internal rotation in CAI joints. This difference is likely a consequence of several factors. 

First, data was collected during weightbearing ankle rotation in this study, in contrast to the loading 

conditions used in previous studies. Second, this study included simultaneous analysis of both 

talocrural and subtalar joint kinematics, while prior studies had focused only on talocrural joint 

motion with different referencing techniques used to quantify the motion of this joint. In a normal 

ankle with a stable subtalar joint, the calcaneus, talus, and tibia internally rotate in sequence during 

weightbearing ankle internal rotation. In contrast, in an ankle with CAI and subtalar joint instability, 

subtalar internal rotation would be increased given the same AJC internal rotation angle, and 
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therefore talocrural internal rotation would be expected to be relatively decreased. In this study, the 

simultaneous measurement of subtalar and talocrural kinematics during weightbearing internal 

rotation enables an improved resolution of the abnormal kinematics present in CAI. These results 

suggest that additional, previously undetected kinematic abnormalities may occur in the setting of 

LAS. 

The 3D-to-2D registration technique using single-plane lateral fluoroscopy which was 

used in this analysis is a well-established technique to measure dynamic weightbearing knee 

kinematics in vivo, with standard errors within 0.53 mm for translation and 0.54º for rotation 

measurements.(Moro-oka et al., 2007) Similar accuracy has been reported with the use of this 

technique for analysis of ankle kinematics, with average interobserver differences reported as 2.2 

mm for out-of-plane translation and 1.8º for rotation, and average intraobserver differences of 2.0 

mm for out-of-plane translation and 1.8º for rotation measurements.(Yamaguchi et al., 2009)  

One potential limitation of this study was that subjects’ contralateral, asymptomatic 

ankles were used as controls. It is possible that individuals in this study may have had some 

underlying anatomic variations contributing to their instability symptoms, but if this were the case, 

it would be less likely that the subjects would have only unilateral symptoms. All subjects were 

determined to have unilateral CAI based on questionnaire. Accordingly, we believe this study was 
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carried out with high internal validity. An important finding in this study was that three subjects 

had MAI of the talocrural joint identified on stress radiographs. Since talocrural and subtalar 

motion were measured separately in this study, these patients with MAI were included in the 

analysis. Stress radiography of the subtalar joints might have provided additional information about 

instability in our study group. Notably, since this study included only young male subjects with 

isolated CAI, these results may not be applicable to females, the elderly, or individuals with other 

associated joint pathologies such as osteoarthritis.  

 Another limitation of this study is that the method used to collect kinematic data has 

relatively large errors in the measurement of out-of-plane or mediolateral translation.(Fregly et al., 

2005) In our analysis, these measures were therefore excluded from our results since these 

measurements were felt to be unreliable. In addition, although loading of the ankle was set at half 

of body weight using a scale prior to testing, weightbearing was not monitored during data 

collection and may not have been constant. Moreover, the use of the lunge position, which 

facilitated image collection, may not be representative of the position in which instability 

symptoms are provoked in FAI. Additional alterations in ankle kinematics may be better detected 

by protocols which include increased weightbearing and/or ankle positions which recreate LAS 

mechanisms of injury or provoke FAI symptoms.  
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 In this study, during ankle internal rotation with the foot in plantar flexion, we found 

increased subtalar internal rotation, increased talocrural anterior translation, and reduced talocrural 

internal rotation in CAI. Our results suggest that instability which is not detected on conventional 

stress radiographs of the talocrural joint may contribute to symptoms in CAI. Based on these 

results, an ankle orthosis or taping to provide stability to the subtalar joint may be helpful, in 

addition to therapeutic exercises, in the treatment of recurrent instability. Improved diagnosis of 

subtalar instability will require the development of better clinical assessments. Further kinematic 

analysis, a larger study population, and longitudinal follow up are needed to determine the relative 

contribution of subtalar instability to recurrent symptoms in CAI and to guide the development of 

effective interventions for this condition. 
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Figure 4-1: Testing position. 

The subject stands in a lunge position with the forward foot fixed on a tilted footplate which is mounted on 

an automated turntable. Single-plane lateral fluoroscopy is performed as the ankle is passively internally 

rotated. 
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Figure 4-2: Anatomic coordinate system. 

Medial and inferior views of the tibia (a) and medial and superior views of the talus (b) and the calcaneus (c) 

are shown.  

Reference points (yellow circles) and lines (yellow dotted lines) are shown in the figure.  

AP: anteroposterior axis; ML: mediolateral axis: SI: superoinferior axis 
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Figure 4-3: Talocrural anterior translation during ankle internal rotation in plantar flexion. 

CAI joints demonstrated significantly greater talocrural anterior translation from 5 to 7º AJC internal rotation 

(*: p < 0.05).  

Ant: Anterior translation; Post: Posterior translation; Ext rot: External rotation; Int rot: Internal rotation 
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Figure 4-4: Talocrural internal rotation during ankle internal rotation in plantar flexion. 

CAI joints demonstrated significantly smaller talocrural internal rotation from -1 to 5º AJC internal rotation 

(*: p < 0.05, **: p < 0.01).  

Ext rot: External rotation; Int rot: Internal rotation 
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Figure 4-5: Subtalar internal rotation during ankle internal rotation in plantar flexion. 

CAI joints demonstrated significantly greater subtalar internal rotation from -1 to 3º AJC internal rotation (*: 

p < 0.05).  

Ext rot: External rotation; Int rot: Internal rotation 
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CHAPTER 4-2 

Fibular Malalignment in Subjects with Chronic Ankle Instability 

 

Introduction 

The recurrence rate of LAS is reportedly very high, and repeated LAS leads to 

CAI.(McKay et al., 2001; Nielsen and Yde, 1989; Yeung et al., 1994) CAI is defined by recurrent 

LAS or giving-way. Using conventional classifications, the cause of CAI is considered to be either 

MAI or FAI.(Freeman, 1965; Hertel, 2002) MAI is, by definition, caused by ligament laxity,(Hertel 

et al., 1999; Lentell et al., 1995; Lofvenberg et al., 1994) whereas FAI is caused by other factors 

including proprioceptive deficits,(Santos and Liu, 2008; Willems et al., 2002; Witchalls et al., 

2012) neuromuscular deficits,(Karlsson and Andreasson, 1992; Kim et al., 2012; Konradsen and 

Ravn, 1990; Mitchell et al., 2008a) postural control deficits,(Freeman et al., 1965; Hale et al., 2007; 

Hubbard et al., 2007; McKeon et al., 2012; Wikstrom et al., 2010b) and muscle weakness.(Hartsell 

and Spaulding, 1999; Tropp, 1986; Willems et al., 2002) However, there is continuing controversy 

as to contributing factors for CAI. Furthermore, osteoarthritis is thought to develop in about 80% of 

patients with longstanding CAI with some cases requiring surgical treatment.(Harrington, 1979; 

Lofvenberg et al., 1994; Povacz et al., 1998) Therefore, it is very important to clarify the major 

causes of CAI and prevent recurrent LAS. 
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The force across the ankle joint can reach almost 4 times body weight under 

weightbearing conditions.(Procter and Paul, 1982) The distal tibiofibular joint plays an important 

role in appropriate load distribution in the talocrural joint and load transfer to the proximal joint by 

forming the mortise structure.(Procter and Paul, 1982) Distal tibiofibular joint instability is 

commonly associated with LAS or ankle syndesmosis injury.(Gerber et al., 1998; Hopkinson et al., 

1990; Roberts et al., 1995) Furthermore, some studies indicated that instability of this joint leads to 

accelerated ankle osteoarthritis and poor subjective outcomes after injury.(Leeds and Ehrlich, 1984; 

McKinley et al., 2008; Ramsey and Hamilton, 1976) Although this instability is commonly 

assessed by radiography,(Harper and Keller, 1989; Pettrone et al., 1983; Xenos et al., 1995) the 

repeatability of radiographic evaluation has been uniformly reported to be poor.(Beumer et al., 

2004; Brage et al., 1997; Lui et al., 2005; Nielson et al., 2005; Ostrum et al., 1995) Thus, axial CT 

is used to assess the distal tibiofibular joint, and shows superiority to radiography.(Beumer et al., 

2004; Chan and Lui, 2007; Dikos et al., 2012; Ebraheim et al., 2003; Gardner et al., 2006) Dikos et 

al.(Dikos et al., 2012) indicated the presence of individual specificity in anteroposterior or 

mediolateral translation and rotation of the fibula by assessing the axial CT image. Therefore, the 

fibula is considered to move three-dimensionally relative to the tibia. However, almost all previous 

studies assessed the fibula two-dimensionally near the articular surface, but none of these study 
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examined fibular alignment in ankles with pathology using three-dimensional analysis. The 

objective of this study was to determine whether abnormal fibular alignment is present in patients 

with CAI using three-dimensional analysis of CT-based bone models.  

The presence of distal tibiofibular joint malalignment has been shown in CAI patients. 

Some studies have indicated that the fibula of CAI ankles is displaced posteriorly compared to that 

in healthy ankles using axial CT image at the talocrural joint level.(Berkowitz and Kim, 2004; Eren 

et al., 2003; Scranton et al., 2000) In contrast, other studies using radiography have noted fibular 

anterior translation in CAI ankles.(Hubbard and Hertel, 2008; Hubbard et al., 2006; Wikstrom et al., 

2010b) Thus, there is no consistent pattern of fibular malalignment in the anteroposterior direction, 

and there has not been any study that considered mediolateral malalignment. Most cases of LAS 

involve injury of the lateral ankle ligaments (e.g., anterior talofibular or calcaneofibular 

ligament).(Frey et al., 1996) In patients with repeated LAS, talocrural anterior translation or 

internal rotation is increased.(Caputo et al., 2009; Kobayashi et al., 2013b) Considering that 

disruption of the lateral ankle ligaments affects abnormal talar anterior translation or internal 

rotation, the fibula might be displaced posteriorly because the distance between the talus and fibula 

is affected by the lateral ankle ligaments. In addition, it has been shown that the anterior 

tibiofibular ligament or interosseous membrane may be damaged in LAS,(Fallat et al., 1998; 
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Gerber et al., 1998; Hopkinson et al., 1990) therefore distal tibiofibular joint instability may also 

occur in CAI patients. For this reason, we hypothesized that the fibula of CAI ankles would 

demonstrate more posterior and lateral displacement with respect to the tibia compared to that of 

contralateral healthy ankles. 

 

Methods 

This study protocol was approved by the local IRB and compared kinematics between 

ankles with CAI and contralateral healthy ankles. All subjects who met specific selection criteria 

signed an IRB-approved informed consent form prior to participation. Inclusion criteria were: 1) 

healthy males; 2) history of at least two episodes of unilateral LAS; 3) multiple unilateral episodes 

of giving-way; 4) presence of unilateral ankle instability; 5) current tendency of the ankle to give 

way during sporting activities; and 6) side to side difference on side hop test and figure-8 hop 

test.(

Subjects 

Docherty et al., 2005) Exclusion criteria were: 1) history of lateral ankle sprain in the last 3 

months; 2) swelling and feeling severe pain in the last 3 months; 3) history of cerebropathy, 

neuropathy or lower extremity injury in the last 3 months; 4) history of rehabilitation treatment 

including balance exercise for the involved ankle. Seventeen male subjects with unilateral CAI 
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(mean ± SD age: 21.0 ± 2.4 years; side of instability: right 11, left 6) participated in this study. 

Distribution of subjects by sport showed that seven played basketball, four soccer, three American 

football, two Lacrosse, and one running. The average period since the most recent LAS was 14.9 ± 

11.3 months.   

  

 All subjects underwent stress radiography of the talocrural joint to screen for mechanical 

instability in both ankles. MAI of the ankle was diagnosed if the joint demonstrated greater than 3 

mm in anterior drawer or greater than 3º in talar tilt.(

Stress radiography 

Langer et al., 2007) 

 

Subjects underwent non-weightbearing CT scan (Zomatom plus-4 VZ, Siemens, Munich, 

Germany) at 1.0 mm slice pitch spanning an area from distal 100 mm of the tibia/fibula to the distal 

end of the calcaneus. During scanning, the ankle was held in a neutral position with regard to 

dorsiflexion/plantar flexion, inversion/eversion, and internal/external rotation. Geometric bone 

models of the tibia and fibula were created from CT images. Exterior cortical bone edges in the 

images were segmented using commercial software (3D-Doctor, Able Software, Lexington, USA), 

CT images and Geometric bone models 
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and these point clouds were converted into polygonal surface models. 

 

 Anatomical coordinate systems were embedded in the tibia model following a method of 

previous studies using a custom software program (VH KneeFitter).(

Anatomical coordinate systems 

Kobayashi et al., 2013a; 

Yamaguchi et al., 2009) Average interobserver difference of the anatomical coordinate systems was 

0.35 mm in translation and 0.76º in rotation, while average intraobserver difference was 0.35 mm 

and 0.85º, respectively (Figure 4-6).(Yamaguchi et al., 2009) 

 

Using a commercial software package (Geomagic Studio, Geomagic, Research Triangle 

Park, NC, USA), the left tibia was reversed relative to the superoinferior anatomical axis, and the 

bilateral tibiae were superimposed using a best-fit algorithm that moved the tibiae to the position of 

least mutual displacement. Then, the amount of displacement based on both rotation and translation 

was recorded (Figure 4-7) and adapted to the left fibula. The software computed the difference 

between two fibular models, and displayed the separation of the two surfaces using a color-coded 

map (49 stages). The exact displacement at any location could be determined by moving the cursor 

Fibular alignment analysis 
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to that location (Figure 4-8). In addition, fibular rotation displacements were recorded by best-fit 

algorithm. The displacements of the fibular anteroposterior and mediolateral tips at the lateral 

malleolus, proximal 5 cm and 10 cm from the inferior tip of the lateral malleolus were determined. 

In this analysis, the anterior/posterior and medial/lateral tips were defined by an anatomical 

coordinate system. 

  

Paired t-test was used to compare fibular alignment between healthy and CAI ankles at 

each reference point. Effect sizes were calculated to clarify the clinical meaning of significant 

differences and the data were interpreted according to Cohen (small, 0.20 to 0.49; medium, 0.50 to 

0.79; large, greater than 0.80).(

Statistical analysis 

Cohen, 1988) All data were analyzed using a statistical software 

package for the social sciences (PASW Statistics 18, SPSS Inc., Chicago, USA). Differences were 

considered significant where p < 0.05. 

 

Results 

Only four subjects demonstrated mechanical instability of the talocrural joint (anterior 

Stress radiography 
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drawer 1, talar tilt 2, both 1). The remaining subjects did not. 

  

There was no significant difference in anteroposterior fibular displacement between 

healthy and CAI ankles (Table 4-1 to 4-3). The fibula of CAI ankles demonstrated a significantly 

more lateral position than that in healthy ankles at all reference points from distal 10 cm to the 

lateral malleolus. In addition, the effect size of mediolateral displacement was medium (Table 4-1 

to 4-3). The distribution of fibular displacement is shown in Figure 4-9. A slight fibular external 

rotation also occurred with fibular lateral displacement (0.07 ± 2.61º). 

Fibular alignment 

 

Discussion 

 The objective of this study was to determine whether abnormal fibular alignment is 

present in patients with CAI. CAI ankles demonstrated a significantly more lateral position than 

healthy ankles, but there was no significant difference in anteroposterior displacement. 

 Distal tibiofibular joints with or without CAI have previously been evaluated by 

two-dimensional analysis on standard axial CT or radiographic images.(Berkowitz and Kim, 2004; 

Beumer et al., 2004; Chan and Lui, 2007; Dikos et al., 2012; Ebraheim et al., 2003; Eren et al., 
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2003; Gardner et al., 2006; Harper and Keller, 1989; Hubbard and Hertel, 2008; Hubbard et al., 

2006; Pettrone et al., 1983; Scranton et al., 2000; Wikstrom et al., 2010b; Xenos et al., 1995) 

However, these methods have been shown to be unreliable,(Beumer et al., 2004; Brage et al., 1997; 

Lui et al., 2005; Nielson et al., 2005; Ostrum et al., 1995) and they could not evaluate planes other 

than the selected plane. In addition, differences in measurement of the fibular alignment in some 

studies were based on the tibia,(Hubbard and Hertel, 2008; Hubbard et al., 2006; Wikstrom et al., 

2010b) whereas differences in other studies were based on the talus,(Berkowitz and Kim, 2004; 

Eren et al., 2003; Scranton et al., 2000) making it difficult to compare findings in CAI. The present 

study analyzed three-dimensional displacement of the fibula with respect to the tibia, so we 

consider that this study provides more detailed and accurate evaluation of the distal tibiofibular 

joint. Although previous studies have reported fibular anteroposterior displacements in CAI 

patients,(Berkowitz and Kim, 2004; Eren et al., 2003; Hubbard and Hertel, 2008; Hubbard et al., 

2006; Scranton et al., 2000; Wikstrom et al., 2010b) this study did not detect significant differences 

in fibular anteroposterior alignment. Since the severity of lateral ankle ligament injury may be 

related to anteroposterior displacement of the fibula, further studies that distinguish the severity of 

LAS or presence of MAI will be required.  

 Many studies have demonstrated lateral displacement of the fibula after ankle 
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syndesmosis injury.(Beumer et al., 2004; Chan and Lui, 2007; Gardner et al., 2006; Harper and 

Keller, 1989; Pettrone et al., 1983) In addition, alteration of the mortise structure attributed to 

fibular malalignment is considered to contribute to the development of ankle arthritis.(Leeds and 

Ehrlich, 1984; McKinley et al., 2008; Ramsey and Hamilton, 1976) However, our study 

demonstrated for the first time that CAI patients with a history of repeated LAS without medial 

ankle sprain showed lateral displacement of the fibula. Anterior tibiofibular ligament and 

interosseous membrane injuries merged in some patients with LAS.(Fallat et al., 1998; Gerber et al., 

1998; Hopkinson et al., 1990) Furthermore, dysfunctions of these ligaments might contribute to the 

slight external rotation of the fibula associated with fibular lateral displacement. Therefore, it may 

be that distal tibiofibular joint instability in CAI ankles is caused by damage to these tissues due to 

repeated LAS. Lateral displacement of the fibula enlarges the distal tibiofibular joint, indicating 

collapse of the mortise structure, and is associated with excessive talar movement. In fact, previous 

in vivo studies showed increased talar rotation in CAI ankles.(Caputo et al., 2009; Kobayashi et al., 

2013b) Distal tibiofibular joint instability causes excessive talar rotation, and may contribute to 

recurrent LAS or giving-way, as well as promoting the development of osteoarthritis. Complex 

analyses that include examination of talocrural joint alignment or kinematics as well as 

investigation of the distal tibiofibular joint will be required in the future.  
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 The anatomical coordinate system used in this study showed very small inter-/intra- 

observer differences in previous studies.(Yamaguchi et al., 2009) Furthermore, the analysis of 

fibular alignment was automated. All subjects had unilateral CAI based on questionnaire responses 

and performance tests. Accordingly, we consider that this study was carried out with high internal 

validity. As for the external validity, since this study examined young, healthy males without 

osteoarthritis, these results may not be applicable to females or elderly patients with osteoarthritis. 

 This study has some limitations. Although all subjects demonstrated evidence of MAI 

on stress radiography, we did not investigate the ligament condition by MRI or arthroscopy. 

Because this study only investigated non-weightbearing static fibular alignment, it will be 

necessary to clarify the dynamic alignment of the distal tibiofibular joint during weightbearing 

movement in CAI patients in the future. 

 Under non-weightbearing conditions, the distal fibula in CAI ankles demonstrated a 

significantly more lateral position than that in healthy ankles. Distal tibiofibular joint instability in 

CAI ankles causes abnormal talar kinematics, which may contribute to recurrent LAS or 

giving-way. From the perspective of preventing recurrent LAS and osteoarthritis, it will be 

necessary to perform complex analyses that include examination of alignment or kinematics in the 

talocrural joint as well as the distal tibiofibular joint in future studies. 
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Figure 4-6: Anatomical coordinate system of the tibia. 

Medial (left) and inferior views (right) of the tibia are shown. Reference points (yellow circle) and lines 

(yellow dotted lines) are shown in the figure. AP; anteroposterior axis, ML; mediolateral axis, SI; 

superoinferior axis 
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Figure 4-7: Best-fit algorithm for the tibiae. 

Right tibia (blue) and reversed left tibia (gray) were superimposed using a best-fit algorithm, and the amount 

of displacement in rotation and translation was recorded. 
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Figure 4-8: Color deviation maps of the fibulae. 

Anteroposterior and mediolateral displacement was displayed using a color-coded map after adaptation of the 

amount of tibial displacement. (a) Anterior view, (b) Posterior view, (c) Medial view, (d) Lateral view. 
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Figure 4-9: The distribution of fibular displacement at the fibula 5 cm proximal to the inferior tip of 

lateral malleolus. 

Gray arrow indicates mean external rotation (0.07 ± 2.61º). Red points; MAI positive, Blue points; MAI 

negative, Gray circle and line; mean and standard deviation. 
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Table 4-1: Displacement of the fibula at 10 cm proximal to the inferior tip of the lateral malleolus. 

 

 

* Values are mean ± standard deviation in mm. 
† Statistical difference between CAI and healthy ankles. 
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Table 4-2: Displacement of the fibula at 5 cm proximal to the inferior tip of the lateral malleolus. 

 

 

 

* Values are mean ± standard deviation in mm. 
† Statistical difference between CAI and healthy ankles. 
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Table 4-3: Displacement at the fibula lateral malleolus. 

 

 

* Values are mean ± standard deviation in mm. 
† Statistical difference between CAI and healthy ankles. 
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CHAPTER 4-3 

In Vivo Talocrural Joint Cartilage Contact Mechanics with Functional 
Ankle Instability 

 

Introduction 

LAS is one of the most common injuries in sports and recreational activity.(Fong et al., 

2007) The LAS recurrence rate has been reported to be as high as 56 to 74%.(McKay et al., 2001; 

Nielsen and Yde, 1989; Yeung et al., 1994) Symptoms of LAS often persist, which may be because 

athletes with LAS often return to sports without consulting a medical care provider.(McKeon and 

Mattacola, 2008) Predominant symptoms are pain and crepitus for the ankle with 1 to 3 re-injuries, 

and an unstable feeling for the ankle with 4 or more re-injuries.(Yeung et al., 1994) Thus, repetition 

of LAS leads to CAI. Results from 6.5 years of follow-up after LAS showed that 5% of athletes 

had to change and 4% had to stop their sports activity, and 6% of non-athletes were not able to 

continue their previous occupational activities at all, while 15% required some form of support in 

order to continue their original occupation, because of residual symptoms in the injured 

ankle.(Verhagen et al., 1995) Furthermore, it is thought that about 80% of patients with 

longstanding CAI develop osteoarthritis with some cases requiring surgical treatment.(Harrington, 

1979; Lofvenberg et al., 1994; Povacz et al., 1998) 
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Altered talocrural joint kinematics resulting from lateral ligamentous laxity or rupture has 

been reported. On in vitro studies, resection of the ATFL or CFL increased talar anterior translation 

or internal rotation.(Bahr et al., 1997b; Ringleb et al., 2005; Rosenbaum et al., 1998; Stormont et 

al., 1985) Similar results were found in patients with injury of the ATFL.(Caputo et al., 2009) In 

addition to abnormal kinematics, resection of ATFL or CFL increases the contact pressure in the 

medial region of the trochlear of the talus.(Omori et al., 2004; Prisk et al., 2010; Rosenbaum et al., 

1997) Bischof et al.(Bischof et al., 2010) showed increased contact strain at the medial and anterior 

regions of the talar dome in patients with MAI due to lateral ligament injury. This abnormal 

cartilage contact stress may contribute to the development of osteoarthritic change in the talocrural 

joint.(Bischof et al., 2010; Hirose et al., 2004; Omori et al., 2004; Valderrabano et al., 2006) Recent 

in vivo studies indicated that abnormal ankle kinematics also occur in patients with FAI who have 

no evidence of MAI.(Brown, 2011; Brown et al., 2009; Kobayashi et al., 2013a) Therefore, altered 

contact mechanics may occur in FAI joints. Nevertheless, there have not been any studies 

investigating talocrural joint contact mechanics in FAI patients. 

It is well established that LAS damages the lateral ankle ligaments and may also damage 

the osteochondral cartilages of the talocrural joint.(Taga et al., 1993; Takao et al., 2003; Takao et al., 

2005; Tol et al., 2000; van Dijk et al., 1996a) The clinical qualitative injury mechanism of LAS is 
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supination or subtalar inversion during ankle plantar flexion.(Vitale and Fallat, 1988) However, 

recent case reports have suggested LAS occurs in ankle dorsiflexion as well as plantar 

flexion.(Fong et al., 2012; Fong et al., 2009; Mok et al., 2011) The talus glides in the posterior 

direction in relation to the tibia during ankle dorsiflexion, and conversely glides in the anterior 

direction during ankle plantar flexion.(Hayes et al., 2006; Stormont et al., 1985) Therefore, the 

contact area of the talus shifts from the posterior to anterior with movement from ankle plantar 

flexion to dorsiflexion.(Driscoll et al., 1994; Omori et al., 2004) In addition, several studies have 

indicated that the contact area of the talus shifts medially during ankle inversion.(Calhoun et al., 

1994; Kura et al., 1998; Prisk et al., 2010; Tochigi et al., 2006) Many cartilage lesions of the 

talocrural joint occur in the medial region because of this anatomical structure and the injury 

mechanisms.(Alanen et al., 1998; Pinar et al., 1997) Furthermore, it is speculated that talar 

cartilage lesion in the anteromedial region might occur during dorsiflexion injury, whereas that in 

the posteromedial region might occur during plantar flexion injury. To investigate this hypothesis, 

more detailed studies are required. Recent studies using a motion-based image-matching technique 

have suggested that LAS occurs during excessive ankle internal rotation as well as inversion.(Fong 

et al., 2012; Fong et al., 2009; Mok et al., 2011) This might be caused by increased cartilage stress 

in FAI patients due to repeated LAS, that is, repeated episodes of excessive ankle internal rotation. 
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Few studies have investigated contact mechanics during ankle internal rotation,(Tochigi et al., 

2006) and there are no in vivo data. Consequently, investigation of talocrural joint contact 

mechanics during ankle internal rotation with ankle dorsiflexion and plantar flexion may contribute 

to clarifying of the injury mechanism of LAS and the relationship between LAS and the 

development of osteoarthritic change. 

The objective of this study was to clarify the talocrural joint contact mechanics during 

weightbearing ankle internal rotation with ankle dorsiflexion and plantar flexion in patients with 

FAI. We hypothesized that 1) the contact area of the talus shifts from posterior to anterior with 

movement from ankle plantar flexion to dorsiflexion; 2) the contact area of the talus shifts medially 

during ankle internal rotation; and 3) the contact area of the talus in FAI joints shifts more medially 

than that in healthy joints. 

 

Methods 

This protocol was approved by the IRB of Yokohama Sports Medical Center prior to the 

initiation of the study. Subjects were recruited from Yokohama Sports Medical Center. Informed 

consent was obtained from all subjects prior to participation. 

Subjects 
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Inclusion criteria for this study were: 1) male gender; 2) a history of two or more unilateral 

LAS with no history of injury to the contralateral ankle; 3) no history of other medical or 

rheumatologic conditions; 4) at least five reported episodes of giving way and a reported ongoing 

tendency for the previously injured ankle to give way during sporting activities. Exclusion criteria 

were: 1) LAS or giving-way occurring in the preceding six weeks; 2) ankle swelling and/or pain 

occurring in the preceding three months; 3) a history of other lower extremity injury occurring in 

the preceding three months or with effects that persisted within the last three months; 4) prior 

physical therapy treatment including balance exercises for the affected ankle; and 5) evidence of 

MAI on stress radiography of the talocrural joints (anterior drawer; greater than 3 mm, talar tilt; 

greater than 3° )(Langer et al., 2007). 

Twelve male subjects with a mean age of 20.8 (range, 18 to 26) years with unilateral FAI 

participated in this study (side of instability: right 8, left 4). Distribution of subjects by sport 

showed that five played basketball, two soccer, two American football, two Lacrosse, and one 

running. The average period since the most recent LAS was 21.0 (range, 4 to 24) months.   

  

Dynamic ankle motion images were obtained using single-plane lateral fluoroscopy (Dyna 

Fluoroscopy 
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Direct, Toshiba Medical Systems Corp., Tochigi, Japan). For each subject, motion sequences were 

recorded for both the ankle with CAI and the uninjured contralateral ankle. Fluoroscopy was 

performed with a sampling frequency of 7.5 Hz. An examiner instructed subjects on the testing 

procedures and measured ankle positions prior to data collection. During fluoroscopic imaging, 

subjects stood in a lunge position with the forward foot fixed mounted on a tilted footplate on a 

custom automated turntable. Specially designed footplates were used to collect data with the ankle 

positioned in 20° dorsiflexion and 20° plantar flexion. Prior to data collection, equal distribution of 

body weight between the two lower extremities was confirmed using a scale. During testing, the 

turntable alternately rotated at a constant speed within an arc determined by a pre-set resisting 

torque (10Nm) so that images were obtained as the ankle cycled passively through two internal and 

external rotations (Figure 4-1). 

 

For all subjects, CT imaging was obtained from both lower extremities (Zomatom plus-4 VZ, 

Siemens, Munich, Germany) at a 1.0 mm slice pitch, spanning an area from distal 100 mm of the 

tibial plafond to the distal extent of the calcaneus. Based on these CT images, geometric bone 

models of the ankle mortise and talus were then created for each patient. Exterior cortical bone 

CT images and Geometric bone models 
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edges in the images were segmented using commercial software (3D-Doctor, Able Software, 

Lexington, USA), and these point clouds were converted into polygonal surface 

models.(Kobayashi et al., 2013a; Yamaguchi et al., 2009) Anatomic coordinate systems were then 

embedded in each bone model using a previously described method and custom software (VH 

KneeFitter) (Figure 4-2).(Kobayashi et al., 2013a; Yamaguchi et al., 2009)  

  

Six-degrees-of-freedom in vivo positions and orientations of the ankle mortise and talus 

were determined using a published 3D-to-2D registration technique and custom JointTrack 

software.(

3D-to-2D registration Technique 

Banks and Hodge, 1996; Yamaguchi et al., 2009) According to the previously published 

technique, fluoroscopic images were manually matched with the geometric bone models followed 

by automated matching utilizing a nonlinear least-squares technique.(Banks and Hodge, 1996; 

Moro-oka et al., 2007) Kinematics were determined from the six-degrees-of-freedom positions and 

orientations of each bone model using Cardan angles.(Tupling and Pierrynowski, 1987) Sufficient 

accuracy of this matching method was reported in previous studies.(Fregly et al., 2005; Moro-oka 

et al., 2007) 
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Talocrural joint kinematics was expressed as the motion of the talar origin relative to the 

tibial coordinate system. Inversion-eversion was defined by rotation around the anteroposterior axis, 

internal-external rotation was defined by rotation around the superoinferior axis, and plantar 

flexion-dorsiflexion was defined by rotation around the mediolateral axis. The displacement of 

talocrural inversion and internal rotation from ankle neutral rotation to maximum internal rotation 

was calculated. 

Outcome Measures 

The contact area of the talus in ankle neutral rotation and maximum internal rotation with 

ankle dorsiflexion and plantar flexion were analyzed based on geometric bone models and 

talocrural joint kinematics data using custom commercial software (3D-JointManager, GLAB corp., 

Hiroshima, Japan). Prior to analysis of the talocrural joint contact mechanics, the tibial bone model 

was cut along the plane parallel to the articular surface of the medial malleolus in order to clarify 

the contact mechanics of the trochlea of the talus, and the contact area between the inferior articular 

surface of tibia and the trochlea of the talus was determined. 

In order to compare contact mechanics among different regions, the talar cartilage surface 

was divided into six regions (longitudinal; 3 × side; 2). The region showing the closest contact was 

confirmed, and if this contact area spanned two regions, both regions were counted. In addition, the 
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center point of the area of closest contact relative to the talar origin was analyzed to compare the 

position of anteroposterior and mediolateral translation (Figure 4-10). 

  

Two-way repeated measures analysis of variance (side × position) was used to compare 

the position of the center point of the area of closest contact, and Tukey’s HSD test or paired t-test 

was used as a post-hoc test. Talocrural joint kinematics in ankle dorsiflexion and plantar flexion 

were compared by paired t-test. Effect sizes were calculated to give clinical meaning to significant 

differences and interpreted according to Cohen(

Statistics 

Cohen, 1988) (small, 0.20 to 0.49; medium, 0.50 to 

0.79; large, greater than 0.80). All data were analyzed with the Statistical Program for the Social 

Sciences software package (PASW Statistics 18, SPSS Inc., Chicago, USA). Differences were 

considered significant where p < 0.05. 

 

Results 

In both healthy and FAI joints, the center point of the area of closest contact in ankle 

dorsiflexion was shifted to a location significantly more anterior than that in ankle plantar flexion 

Anterior translation 
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in both rotation positions (p < 0.001, Table 4-4, Figure 4-11). In healthy joints, the contact area in 

the ankle dorsiflexion position was 20.04 mm (effect size of 3.14) and 15.89 mm (effect size of 

2.88) more anterior than that in the ankle plantar flexion position in ankle neutral rotation and 

maximum internal rotation, respectively. In FAI joints, the ankle dorsiflexion position was 16.23 

mm (effect size of 2.37) and 15.05 mm (effect size of 2.42) more anterior than that in ankle plantar 

flexion position in ankle neutral rotation and maximum internal rotation, respectively. However, 

there was no significant difference between healthy and FAI joints in each position (Table 4-4, 

Figure 4-11). 

  

Medial translation of the center point of the closest contact area from ankle neutral 

rotation to maximum internal rotation was 6.08 mm (effect size of 1.05) in healthy joints and 10.01 

mm (effect size of 1.93) in FAI joints in ankle dorsiflexion, and 6.64 mm (effect size of 1.09) in 

healthy joints and 9.41 mm (effect size of 1.65) in FAI joints in ankle plantar flexion. In FAI joints, 

the mediolateral position in maximum ankle internal rotation was significantly more medial than 

that in ankle neutral rotation (p < 0.05, Table 4-5, Figure 4-11). Furthermore, the center point of 

FAI joints was significantly more medial than that in healthy joints in the ankle 

Medial translation 
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dorsiflexion-internal rotation position (2.52 mm, p < 0.01, effect size of 1.26) and plantar 

flexion-internal rotation position (3.01 mm, p < 0.01, effect size of 0.93) (Table 4-5, Figure 4-11). 

 

 FAI joints demonstrated significantly greater talocrural inversion in ankle dorsiflexion 

(Healthy; -2.70 ± 2.30° , FAI; 0.55 ± 3.19° , p = 0.004, effect size of 1.18, Figure 4-12), and 

significantly greater talocrural internal rotation in ankle plantar flexion (Healthy; 8.63 ± 4.16° , 

FAI; 12.90 ± 4.86°, p < 0.001, effect size of 0.95, Figure 4-13) from ankle neutral rotation to 

maximum internal rotation. 

Talocrural joint Kinematics 

 

Discussion 

The objective of this study was to determine the talocrural contact mechanics during 

weightbearing ankle internal rotation with ankle dorsiflexion and plantar flexion in patients with 

FAI. The area of closest contact of the talus shifted from posterior to anterior between ankle plantar 

flexion and dorsiflexion, and shifted medially during ankle internal rotation. In addition, the closest 

contact area of FAI joints was significantly more medial than that in healthy joints during 

maximum ankle internal rotation. Furthermore, FAI joints demonstrated greater talocrural internal 
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rotation and inversion displacement during ankle internal rotation. Thus, these findings supported 

our hypothesis.  

 To our knowledge, this is the first study demonstrating talocrural contact mechanics 

during in vivo weightbearing dynamic ankle internal rotation in FAI subjects. Although some 

previous studies have investigated in vivo talocrural cartilage contact stress with or without 

instability, these studies analyzed static or quasi-static conditions.(Bischof et al., 2010; Li et al., 

2008; Wan et al., 2006, 2008) Tochigi et al.(Tochigi et al., 2006) indicated that talocrural articular 

contact stress on the anterolateral and posteromedial regions increased during the addition of 

internal rotation torque with axis load in vitro. In this study, FAI joints demonstrated greater 

talocrural internal rotation, and the closest contact area of the talus shifted to the anteromedial 

region during ankle dorsiflexion-internal rotation and to the posteromedial region during ankle 

plantar flexion-internal rotation, but the proximity of the anterolateral region was not detected. The 

weightbearing passive ankle internal rotation utilized in this study involved different loading 

conditions than those in the previous study,(Tochigi et al., 2006) and might have led to slight ankle 

inversion. In fact, the present study showed greater talocrural inversion in FAI joints as with 

previous studies.(Caputo et al., 2009; Rosenbaum et al., 1998) This excessive talocrural inversion 

associated with ankle internal rotation might have caused greater medial shift of the area of closest 
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contact in FAI joints. Several studies have indicated that medial talar contact stress is increased 

during ankle inversion.(Calhoun et al., 1994; Kura et al., 1998; Prisk et al., 2010; Tochigi et al., 

2006) Thus, slight ankle inversion during ankle internal rotation might have induced a decrease in 

anterolateral contact stress. However, simple horizontal movement rarely occurs in vivo. We 

consider that the present testing conditions are closer to natural physiological movements.  

 Many studies have shown that most osteochondral lesions after acute LAS were in the 

medial region of the talocrural joint.(Hirose et al., 2004; Kibler, 1996; Takao et al., 2005; van Dijk 

et al., 1996a) Similarly, there is a high proportion of osteochondral lesions in the talar medial 

region in patients with CAI.(Harrington, 1979; Hintermann et al., 2002; Krips et al., 2001; van Dijk 

et al., 1996a) In addition, several studies indicated that the region most commonly demonstrating 

osteochondral lesions is the anteromedial region in the talus.(Hirose et al., 2004; Sugimoto et al., 

2009) Bischof et al.(Bischof et al., 2010) suggested that the position of peak talar cartilage strain in 

MAI joints demonstrated significant anterior and medial translation. The present study showed that 

FAI joints demonstrated significant medial translation, partially supporting the findings of Bischof 

et al.(Bischof et al., 2010), but there was no significant difference in anterior translation. It is 

thought that these differences in results were because the present study examined FAI patients who 

did not demonstrate evidence of MAI on stress radiography. This study detected abnormal 
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talocrural kinematics and contact mechanics in FAI subjects. Considering the results of the present 

study along with recent in vivo findings of abnormal ankle kinematics in patients with FAI,(Brown, 

2011; Brown et al., 2009; Kobayashi et al., 2013a) there may be previously unknown abnormal 

kinematics caused by joint instability that can not be detected by stress radiography in FAI joints. 

Since articular geometry is thought to make a large contribution to stabilizing the weightbearing 

ankle rotation,(Stormont et al., 1985; Tochigi et al., 2006; Watanabe et al., 2012) the alteration of 

contact mechanics in FAI joints may increase cartilage stress in the medial talar region. 

Furthermore, these abnormal talocrural kinematics and contact mechanics may contribute to the 

development of osteoarthritic change.  

 Clarification of the injury mechanism of LAS is a key component required for the 

development of effective treatment and prevention protocols. Recent studies reported 

three-dimensional kinematics during LAS occurrence in vivo.(Fong et al., 2012; Fong et al., 2009; 

Mok et al., 2011) Fong et al.(Fong et al., 2012) suggested that the injury mechanism of LAS is not 

only ankle supination or subtalar inversion with plantar flexion but also ankle excessive internal 

rotation in slight dorsiflexion during cutting movement. However, this analysis contains several 

problems. First, data are limited because video images taken from multiple directions at the time of 

injury would be required, and the accuracy of analysis depends on the resolution of the images. 
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About 30% of LAS patients had osteochondral lesions and the medial region of the talar trochlea 

showed a high rate of involvement.(Alanen et al., 1998; Pinar et al., 1997) The present study 

examined in vivo weightbearing internal rotation with ankle dorsiflexion or plantar flexion, which 

was assumed to be the injury mechanism in LAS. As a result, the anteromedial region of talar 

trochlea was closest during ankle dorsiflexion-internal rotation, whereas the posteromedial region 

was closest during ankle plantar flexion-internal rotation. In other words, osteochondral lesion in 

the anteromedial region of the talar trochlea on MRI after LAS may indicate the injury occurred in 

ankle dorsiflexion and internal rotation. In contrast, osteochondral lesion in the posteromedial 

region of talar trochlea may indicate injury in the ankle plantar flexion position. Therefore, our 

findings may contribute to understanding the injury mechanisms involved in LAS. 

The 3D-to-2D registration technique using single-plane lateral fluoroscopy or 

radiography is a well-established technique to measure dynamic weightbearing knee kinematics in 

vivo with standard errors within 0.53 mm for translations and 0.54° for rotations.(Moro-oka et al., 

2007) All subjects had unilateral FAI based on questionnaire responses. In addition, ankle rotation 

speed and resisting torque during imaging were controlled by an automated turntable in all subjects. 

Moreover, the present findings showed large effect sizes.(Cohen, 1988) Accordingly, we consider 

that this study was carried out with high internal validity. As for the external validity, since this 
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study examined young, healthy males who did not have osteoarthritis, these findings may not be 

applicable to females or elderly people with osteoarthritis. 

 This study has some limitations. Although the amount of load at measurement was 

controlled to be exactly a half of the body weight using a scale, we cannot rule out the possibility 

of an error in the amount of weightbearing during imaging procedures. Although all subjects 

demonstrated evidence of MAI on stress radiography, we did not check the ligament condition by 

MRI or arthroscopy. 

In this study, the area of closest contact in the talocrural joints of FAI patients was 

significantly more medial than that in healthy joints during weightbearing ankle internal rotation. 

This suggests that FAI patients without mechanical instability in the talocrural joint are at risk for 

the development of osteoarthritic change in the future. We could not clarify the relationship 

between abnormal contact mechanics and osteoarthritic change in this cross sectional study. 

Therefore, a further longitudinal study is needed to determine whether abnormal contact mechanics 

can cause osteoarthritis.  

The area of closest contact of the talus shifted to the anteromedial region during ankle 

dorsiflexion-internal rotation, whereas it shifted to the posteromedial region during ankle plantar 

flexion-internal rotation. This finding may contribute to understanding the injury mechanism of 
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LAS. In a future study, complex analysis of injury kinematics based on motion analysis and 

cartilage lesion data on MRI may be useful to clarify the injury mechanism of LAS. 
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Figure 4-10: An example of distribution of the contact area and the center point relative to the talar 

origin. 

Reference points (white circle) and lines (black lines) are shown in the figure. Closer contact areas are shown 

more red colors, and the center point of the area of closest contact is shown by a pink circle. 
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Figure 4-11: Distribution of the closest area in the right ankle at maximum internal rotation. 

The distribution in healthy joints with (a) ankle dorsiflexion-internal rotation and (b) ankle plantar 

flexion-internal rotation, and that in FAI joints with (c) ankle dorsiflexion-internal rotation and (d) ankle 

plantar flexion-internal rotation.  

When the area of closest contact spanned two regions, the number is indicated on the line. 
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Figure 4-12: Comparisons of talocrural inversion displacements in healthy and FAI joints during 

ankle internal rotation at 20 degrees dorsiflexion and 20 degrees plantar flexion. 

*: FAI joints demonstrated significantly greater talocrural inversion in ankle dorsiflexion (p = 0.004). 
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Figure 4-13: Comparisons of talocrural internal rotation displacements in healthy and FAI joints 

during ankle internal rotation at 20 degrees dorsiflexion and 20 degrees plantar flexion. 

*: FAI joints demonstrated significantly greater talocrural internal rotation in ankle plantar flexion  

(p < 0.001). 
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Table 4-4: Anteroposterior position of the center point of the area of closest contact. 

 

 

 

 

 

 

 

 

 

 

a: significantly more anterior than that in ipsilateral ankle neutral rotation and maximum internal rotation with ankle  

  plantar flexion (p < 0.001). 

b: significantly more anterior than that in ipsilateral ankle neutral rotation with ankle plantar flexion (p < 0.05). 
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Table 4-5: Mediolateral position of the center point of the area of closest contact. 

 

 

 

 

 

 

 

a: significantly more medial than that in ipsilateral ankle neutral rotation with ankle dorsiflexion (p < 0.05). 

b: significantly more medial than that in ipsilateral ankle neutral rotation with ankle plantar flexion (p < 0.05). 

c: significantly more medial than that in ipsilateral ankle neutral rotation and maximum internal rotation with ankle plantar 

flexion (p < 0.01). 

d: significantly more medial than that in contralateral ankle maximum internal rotation with ankle dorsiflexion (p < 0.01). 

e: significantly more medial than that in contralateral ankle maximum internal rotation with ankle plantar flexion (p < 0.01). 



154 

CHAPTER 5 
PREVENTION OF LATERAL ANKLE SPRAIN 
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CHAPTER 5-1 

The Effects of a Semi-rigid Brace or Taping on Talocrural and Subtalar 
Joints Kinematics in Chronic Ankle Instability 

 

Introduction 

LAS is one of the most common injuries in sports and recreational activity.(Fong et al., 

2007) According to previous reports, 10 to 30 % of all athletic injuries are ankle injuries and ankle 

sprains comprise 70% or more of ankle injuries in many sports.(Fong et al., 2007) Since LAS 

patients often return to sports without consulting a medical institution and receiving appropriate 

treatment, symptoms often persist.(McKeon and Mattacola, 2008) Recurrence of ankle sprain is 

very high with range of 56 to 74%,(McKay et al., 2001; Nielsen and Yde, 1989; Yeung et al., 1994) 

and repeated LAS leads to CAI. Since CAI causes enormous economic and social costs, prevention 

of LAS recurrence is an important issue. 

CAI is typically caused by MAI and/or FAI.(Hertel, 2002) Previously studied factors 

contributing to CAI have included "ligament laxity",(Hertel et al., 1999; Hubbard and Cordova, 

2009; Hubbard and Hertel, 2006) "proprioceptive deficits",(Brown et al., 2004; Fu and Hui-Chan, 

2005; Santos and Liu, 2008) "neuromuscular deficits",(Delahunt et al., 2007; Palmieri-Smith et al., 

2009; Wikstrom et al., 2010a) "postural control deficits",(Brown et al., 2010; Hertel et al., 2006; 
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McKeon and Hertel, 2008a) and "muscle weakness",(Docherty et al., 1998; Kaminski et al., 2003; 

Willems et al., 2002) but the cause of CAI remains controversial. Furthermore, the association 

between CAI and abnormal kinematics has been examined. Based on a study using surface 

makers,(Delahunt et al., 2006a; Monaghan et al., 2006) it was suggested that the CAI subject walks 

with the ankle in a varus position compared to that in healthy subjects. A similar finding was shown 

during the side hop maneuver.(Delahunt et al., 2007) In addition, CAI joints demonstrated 

abnormal talocrural and subtalar joint kinematics in detailed three-dimensional analytical 

studies.(Caputo et al., 2009; Kobayashi et al., 2013a; Kobayashi et al., 2013b) Therefore, 

improvement of abnormal kinematics might contribute to the prevention of recurrent LAS. 

Some previous studies have indicated that the external ankle support provided by bracing 

or taping is effective for preventing recurrent LAS.(Handoll et al., 2001; Surve et al., 1994; 

Verhagen et al., 2000) The researchers considered that the reason for this effectiveness is that 

external ankle support contributes to improved neuromuscular control(Karlsson and Andreasson, 

1992) or to proper grounding for the foot.(Eils and Rosenbaum, 2003; Wright et al., 2000b) Recent 

three-dimensional analysis suggested that LAS is caused by excessive ankle internal rotation in 

plantar flexion or dorsiflexion.(Fong et al., 2012; Fong et al., 2009; Mok et al., 2011) However, it is 

unclear whether external ankle support has any effect on joint kinematics during these movements. 
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It is necessary to consider whether ankle joint kinematics during movements that are assumed to 

cause LAS can be normalized by the application of external ankle support for CAI joints. 

The objective of this in vivo weightbearing study was to determine whether the 

application of a semi-rigid brace or taping of the ankle can normalize the abnormal kinematics of 

CAI joints during ankle internal rotation in plantar flexion. We hypothesized that a semi-rigid brace 

or taping would contribute to restoring normal ankle kinematics in CAI joints. 

 

Methods 

This protocol was approved by the IRB of Yokohama Sports Medical Center prior to the 

initiation of the study. Subjects were recruited from Yokohama Sports Medical Center. Informed 

consent was obtained from all subjects prior to participation. Inclusion criteria for this study were: 

1) male gender; 2) a history of two or more unilateral LAS with no history of injury to the 

contralateral ankle; 3) no history of other medical or rheumatologic conditions; 4) at least five 

reported episodes of giving-way and a reported ongoing tendency for the previously injured ankle 

to give-way during sporting activities. Exclusion criteria were: 1) LAS or giving-ways occurring in 

the preceding six weeks; 2) ankle swelling and/or pain occurring in the preceding three months; 3) 

Subjects 
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a history of other lower extremity injury occurring in the preceding three months or with effects 

that persisted within the last three months; and 4) prior physical therapy treatment including 

balance exercises for the affected ankle. Fourteen male subjects with a mean age of 21.1 (range, 19 

to 26) years with unilateral CAI participated in this study (side of instability: right 10, left 4). The 

average period since the most recent LAS was 20.4 (range, 4 to 24) months. 

 

 Stress radiographs of the bilateral talocrural joints were obtained for all subjects. 

Mechanical instability on stress radiographs was defined as the presence of greater than 3 mm 

translation on anterior drawer test or greater than 3° of talar tilt on stress test.(

Stress radiography 

Langer et al., 2007) 

All radiographs were analyzed by one researcher. 

 

All subjects underwent a single weightbearing fluoroscopy and CT scan of the bilateral 

ankles to analyze the respective joint kinematics. Fluoroscopy measurements were obtained in the 

order of healthy joints (Healthy), CAI joints (CAI), semi-rigid brace for CAI joints (Brace), and 

taping for CAI joints (Tape). The semi-rigid brace ZAMST A2-DX (Nippon Sigmax Corp., Tokyo, 

Protocol 
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Japan) used in this study consisted of nylon supporters and polyethylene guard and was designed to 

resist varus/valgus and internal/external rotation loads while allowing dorsiflexion/plantar flexion 

(Figure 5-1). A novel taping technique was developed to stabilize the medial and lateral sides of the 

talocrural and subtalar joints while allowing dorsiflexion/plantar flexion (Figure 5-2). 

 

Dynamic ankle motion was imaged using single-plane lateral fluoroscopy (Dyna Direct, 

Toshiba Medical Systems Corp., Tochigi, Japan). For each subject, motion sequences were 

recorded for both the ankle with CAI and the contralateral healthy joint. Fluoroscopy was 

performed with a sampling frequency of 7.5 Hz. An examiner instructed subjects on the testing 

procedures and measured ankle positions prior to data collection. During fluoroscopic imaging, 

subjects stood in a lunge position with the forward foot fixed on a tilted footplate mounted on a 

custom automated turntable. Specially designed footplates were used to collect data with the ankle 

positioned in 20° plantar flexion. Prior to data collection, equal distribution of body weight 

between the two lower extremities was confirmed using a scale. During testing, the turntable 

alternately rotated at a constant speed within an arc determined by a pre-set resisting torque 

(10Nm) so that images were obtained as the ankle cycled passively through two internal and 

Fluoroscopy 
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external rotations (Figure 4-1).(Kobayashi et al., 2013b) 

 

For all subjects, CT images were obtained from both lower extremities (Zomatom plus-4 VZ, 

Siemens, Munich, Germany) at a 1.0 mm slice pitch, spanning the area from the distal 100 mm of 

the tibial plafond to the distal extent of the calcaneus. Geometric bone models of the ankle mortise, 

talus, and calcaneus were then created from these CT images for each patient. Exterior cortical 

bone edges in the images were segmented using commercial software (3D-Doctor, Able Software, 

Lexington, USA), and these point clouds were converted into polygonal surface 

models.(

CT images and Geometric bone models 

Kobayashi et al., 2013a; Kobayashi et al., 2013b; Yamaguchi et al., 2009) Anatomic 

coordinate systems were then embedded in each bone model using a previously described method 

and custom software (VH KneeFitter).(Kobayashi et al., 2013a; Kobayashi et al., 2013b; 

Yamaguchi et al., 2009)    

  

Six-degrees-of-freedom in vivo positions and orientations of the ankle mortise, talus, and 

calcaneus were determined using a published 3D-to-2D registration technique and custom 

3D-to-2D registration Technique 
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JointTrack software.(Banks and Hodge, 1996; Yamaguchi et al., 2009) According to the previously 

published technique, fluoroscopic images were manually matched with the geometric bone models 

followed by automated matching utilizing a nonlinear least-squares technique.(Banks and Hodge, 

1996; Moro-oka et al., 2007) Kinematics were determined from the six-degrees-of-freedom 

positions and orientations of each bone model using Cardan angles.(Tupling and Pierrynowski, 

1987) 

  

Kinematics of the talocrural joint, the subtalar joint, and the AJC were expressed as the 

motion of the talar origin relative to the tibial coordinate system, the motion of the calcaneal origin 

relative to the talar coordinate system, and the motion of the calcaneal origin relative to the tibial 

coordinate system, respectively. Inversion-eversion was defined by rotation around the 

anteroposterior axis, internal-external rotation was defined by rotation around the superoinferior 

axis, and plantar flexion-dorsiflexion was defined by rotation around the mediolateral axis. Selected 

outcome measures were talocrural anterior translation, talocrural internal rotation, and subtalar 

internal rotation, which had each demonstrated significant differences between healthy and CAI 

joints in our previous study.(

Outcome Measures 

Kobayashi et al., 2013b) Therefore, this study compared talocrural 
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anterior translation, talocrural internal rotation, and subtalar internal rotation among Healthy, CAI, 

Brace, and Tape. Kinematics was compared between the CAI and healthy joints from 7° AJC 

external rotation to 7° AJC internal rotation, where the joint position on the healthy side while 

standing was set at 0° AJC rotation.(Kobayashi et al., 2013b)    

  

 Kruskal-Wallis test was used to compare joint kinematics between four groups (Healthy, 

CAI, Brace, Tape), and Tukey-Kramer test as a post-hoc test. All data were analyzed using the 

Statistical Program for the Social Sciences software package (PASW Statistics 18, SPSS Inc., 

Chicago, USA). Differences were considered significant at p < 0.05. 

Statistics 

 

Results 

Three subjects demonstrated mechanical instability of the talocrural joint (anterior 

drawer 1, talar tilt 2), whereas the remaining subjects did not. 

Stress radiography 

  

Joint Kinematics 
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In the talocrural joint kinematics, there was no significant difference in anterior 

translation or internal rotation following application of a semi-rigid brace or taping (Figures 5-3, 

5-4). In the subtalar joint kinematics, a tendency toward restoration of normal kinematics in the 

CAI joints was observed in Brace and Tape. However, the difference was not significant (Figure 

5-5). 

 

Discussion 

The objective of this study was to determine whether the application of a semi-rigid 

brace or taping of the ankle would normalize kinematics in CAI joints. During ankle internal 

rotation in plantar flexion, there was no significant restoration of normal kinematics in the CAI 

joints following the application of a semi-rigid brace or taping. 

 It was previously reported that external ankle supports effectively prevent recurrent 

LAS(Dizon and Reyes, 2010; Surve et al., 1994) by improving neuromuscular control, which was 

damaged by LAS.(Karlsson and Andreasson, 1992) In contrast, negative results have been shown 

in subjects without previous LAS.(Sitler et al., 1994; Surve et al., 1994; Tropp et al., 1985a) 

Therefore, normalization of abnormal joint kinematics is necessary to prevent initial LAS. Many 

studies have indicated that external ankle supports could restrict ankle inversion/eversion range of 
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motion or kinematics.(Cordova et al., 2000; Cordova et al., 2002; Cordova et al., 2010; Gudibanda 

and Wang, 2005; Lee et al., 2012; McCaw and Cerullo, 1999; Riemann et al., 2002; Verhagen et al., 

2001) However, some studies reported that external ankle support limits mechanically imposed 

ankle inversion stress when the ankle is in the position in which LAS occurs.(Cordova et al., 2000; 

Verhagen et al., 2001; Verhagen et al., 2000) Thus, consensus has not yet been achieved. In 

addition, these studies did not evaluate the dynamic kinematics of the talocrural and subtalar joints 

separately. Therefore, modification of joint kinematics following application of external ankle 

supports needs to be evaluated by detailed measurements of talocrural and subtalar joint 

movements in the foot position assumed to cause LAS. 

 To our knowledge, this is the first study to consider the effects of external ankle support 

on talocrural and subtalar joints kinematics using the 3D-to-2D registration technique. During 

weightbearing ankle internal rotation in plantar flexion, subtalar internal rotation tended to 

approach that of healthy joints as suggested by previous studies,(Arnold and Docherty, 2004; Dizon 

and Reyes, 2010) but there was no significant difference between Brace or Tape and CAI. In 

contrast, there were poor effects on the talocrural joint. This may be because the range of ankle 

motion tested in our study had much smaller torque and slower speed compared with those of ankle 

motion during LAS. It may be possible to obtain a beneficial effect during motion closer to that 
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occurring during LAS.  

 The 3D-to-2D registration technique using single-plane lateral fluoroscopy or 

radiography is a well-established technique to measure dynamic weightbearing knee kinematics in 

vivo with standard errors within 0.53 mm for translations and 0.54° for rotations.(Moro-oka et al., 

2007) All subjects demonstrated a unilateral CAI based on questionnaire responses. In addition, 

fitting of the brace and taping were performed by a single physical therapist. Moreover, there were 

no significant differences in AJC plantar flexion angles. Accordingly, we consider that this study 

was carried out with high internal validity. As for the external validity, since this study examined 

young, healthy males who did not have osteoarthritis, these findings may not be applicable to 

females or elderly people with osteoarthritis. Furthermore, the results may differ when another type 

of brace or taping is applied.   

 In this study, torque and speed of the tested ankle motion were smaller and slower, 

respectively, than those of ankle motion during LAS. Although the amount of load during 

measurement was controlled to exactly half of the body weight using a scale, we cannot rule out 

the possibility of an error in the amount of weightbearing during imaging procedures. 

 During ankle internal rotation in plantar flexion, there was no apparent restoration of 

normal kinematics in the CAI joints after application of a semi-rigid brace or taping. This finding 
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indicated that the effects of a semi-rigid brace or taping on CAI joints during ankle weightbearing 

rotation were limited. This information will be useful in improving brace design and taping 

technique. However, further detailed studies that observe the effects of various types of external 

supports on talocrural and subtalar joint kinematics during movements that more closely 

approximate those that occur during LAS are needed. 
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Figure 5-1: A semi-rigid brace. 

This brace was designed to resist varus/valgus and internal/external rotation loads while allowing 

dorsiflexion/plantar flexion. 
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Figure 5-2: A novel taping (Left: lateral view, Right: medial view). 

This technique was developed to stabilize the medial and lateral sides of the talocrural and subtalar joints 

while allowing dorsiflexion/plantar flexion. It consisted of elastic (brown) and nonelastic (white) tape. 
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Figure 5-3: Talocrural anterior translation during ankle internal rotation in plantar flexion. 

There was no significant difference after application of a semi-rigid brace or taping. 

Int rot.: internal rotation, Ext rot.: external rotation, AJC: Ankle joint complex 

*: Significant difference between CAI and Healthy 
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Figure 5-4: Talocrural internal rotation during ankle internal rotation in plantar flexion. 

There was no significant difference after application of a semi-rigid brace or taping. 

Int rot.: internal rotation, Ext rot.: external rotation, AJC: Ankle joint complex 

*: Significant difference between Healthy and CAI, ¶: Significant difference between Healthy and CAI or 

Brace, †: Significant difference between Healthy and other groups 
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Figure 5-5: Subtalar internal rotation during ankle internal rotation in plantar flexion. 

There was no significant difference after application of a semi-rigid brace or taping. 

Int rot.: internal rotation, Ext rot.: external rotation, AJC: Ankle joint complex 

*: Significant difference between CAI and Healthy 
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CHAPTER 5-2 

The Effects of the Balanceshoes Training to Reduce Lateral Ankle Sprain 
in Collegiate Athletes: A Randomized Control Study 

 

Introduction 

LAS is one of the most common injuries in competitive sports and recreational activities. 

(Fong et al., 2007) It is estimated that 23,000 ankle sprains occur daily in the United States, which 

translates to about 1 sprain per 10,000 people every day. (Kannus and Renstrom, 1991) Symptoms 

of ankle sprain often persist, because athletes with ankle sprain often return to sports without 

consulting a medical care provider. (McKeon and Mattacola, 2008) The rate of recurrent ankle 

sprain is more than 40%, and repeated ankle sprains lead to CAI and ankle osteoarthritis. (Hertel, 

2002; Verhagen et al., 1995; Yeung et al., 1994) Therefore, the development of an effective LAS 

prevention program is required. 

Since the 1960's, intervention strategies have been introduced for the prevention of ankle 

sprains. (Simon, 1969) Various interventions have been proposed including balance/coordination 

training, sport/activity-specific technical training, external support (bracing/taping), foot orthotics, 

footwear and strengthening/stretching. (Handoll et al., 2001) These studies showed that a balance 

training program significantly reduces the risk of LAS only in athletes with a history of ankle 
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sprain. (Emery et al., 2005; Hupperets et al., 2009; Janssen et al., 2011; McGuine and Keene, 2006; 

van der Wees et al., 2006; Verhagen et al., 2004; Verhagen et al., 2000; Verhagen et al., 2005) In 

contrast, such training has limited ability to prevent initial LAS. (Cumps et al., 2007; McGuine et 

al., 2000; Verhagen et al., 2004) Ankle braces have also been used to prevent LAS in high risk 

sports (e.g. basketball, football, volleyball). However, evidence shows that external ankle support 

provides a greater relative risk reduction for subjects with previous ankle sprain than for subjects 

without previous sprain. (Handoll et al., 2001) Currently, there are effective preventive intervention 

for recurrent LAS, but no effective intervention to prevent initial LAS in athletes without previous 

injury. It is considered that balance training or bracing/taping can support mechanical or functional 

deficit of the ankle following LAS, but these interventions have limited preventive effects in 

healthy ankles. The purpose of this study was to develop an original specific-component exercise 

program that can effectively reduce the incidence of both initial and recurrent LAS in order to 

create an effective and efficient prevention program. 

We recently developed a training device called ReaLine Balanceshoes (RBS) (GLAB Inc., 

Hiroshima, Japan, Figure 5-6), which is a sandal-like balancing device that athletes wear by 

strapping the device over their shoes. Since the balancing axis of the RBS is located parallel to the 

subtalar joint axis, the knee-over-the-toe position and calcaneus inversion/eversion mid position are 
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inevitably reproduced during various weightbearing exercises by aiming to maintain the sole of the 

RBS in a horizontal position. We therefore expect that the exercise program using the RBS (the 

RBS program) will integrate proper technique, body mechanics and neuromuscular control, which 

may reduce the incidence of LAS. (Kubota et al.) 

The hypothesis was that the incidence of LAS would be significantly reduced in the 

collegiate athletes who underwent the RBS program compared with that in the balance board (BB) 

program group. 

 

Methods 

This study protocol was approved by the local IRB. All subjects who met the specific 

selection criteria signed an IRB-approved informed consent form prior to participation. 

Intercollegiate athletes were recruited. Inclusion criteria were: 1) intercollegiate athlete status and 

participation in sports that required jumping or cutting movements and 2) age 18 to 22 years. Both 

genders were included. Exclusion criteria were: 1) inability to participate in daily training or 

practice, 2) injury, illness or medical risk, 3) communication disability, or 4) mental disturbance. 

Forty-eight athletes aged 18 to 21 years participated in this study. The breakdown by gender and 

Subjects 
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sport played was 20 males and 12 females in badminton, and 16 females in volleyball. 

 

The study was designed as a randomized control trial. All athletes completed a 

questionnaire regarding age, height, mass, and history of previous LAS. Each athlete was 

randomized to one of the two intervention groups (RBS group or BB group) following recruitment. 

The athletes performed each program once a week before practice, and were followed for 7 months 

(29 weeks) to monitor the occurrence of ankle sprain and participation in practice or games. At the 

end of the follow-up period, analyses were performed to calculate the risk of LAS (Figure 5-7). All 

injured athletes reported their injury mechanisms (i.e., contact/noncontact and inversion/eversion) 

and the severity of the sprain along with all necessary details. If necessary, they were examined by 

a medical institution to rule out fracture. Athletes who sustained contact ankle sprains, defined as 

an injury involving physical contact at any body part during the injurious action, were excluded 

from analyses. LAS was defined as an ankle injury with an inversion mechanism that caused the 

player to miss at least one game or practice. Hours of participation in practice or games were 

recorded by the club manager and reported to the researchers monthly. 

Study design and Protocol 
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 The BB group performed the program using a balance board (Mega Sports Inc., Tokyo, 

Japan) according to Verhagen et al. (

Intervention 

Verhagen et al., 2004), and the RBS group performed our 

original program. Both programs were performed under instruction by trainers familiar with the 

contents of each program.  

 The RBS group performed the RBS program, in which the athletes used the RBS, a 

training device aimed at correcting dynamic ankle inversion without knee valgus. Our preliminary 

study demonstrated that the sole remains horizontally balanced only if the knee-over-the-toe 

position is maintained. A multi-staged progressive exercise program was developed, including slow 

closed kinetic chain strengthening, joint realignment (restoring screw-home movement of the knee), 

balancing (biofeedback), feedforward (landing), and plyometric (jumping) components (Figure 

5-8).(Kubota et al.) 

 The BB training consisted of 14 basic exercises on and off the BB (Mega Sports Inc., 

Tokyo, Japan), with variations on each exercise (Figure 5-9). The program provided four prescribed 

exercises: (1) one exercise without any additional equipment, (2) one exercise with a ball only, (3) 

one exercise with a BB only, and (4) one exercise with a ball and a BB (Figure 5-10). (McGuine 

and Keene, 2006; Verhagen et al., 2004) Each week, all four prescribed exercises were of similar 
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difficulty and intensity, with a gradual increase in difficulty and intensity during the 29 weeks. The 

trainer chose one of the four prescribed exercises to carry out. 

 All athletes started at the first level of difficulty and proceeded to the next level. All 

training sessions were designed to be performed prior to daily practice. A minimum of 30 seconds 

of rest was provided between sets and approximately 1 min between the exercises so that fatigue 

did not interfere with neuromuscular motor control and performance. 

 

 Baseline characteristics were compared between groups using t test or Fisher exact test. 

Relative risk was calculated as the ratio of incidence rates for the RBS group versus that for the BB 

group. Results are presented as means with a 95% CI unless otherwise noted. All tests were 

two-tailed, and results were considered significant when p-values were less than 0.05. All data 

were analyzed using Statistical Program for the Social Sciences software (PASW Statistics 18, 

SPSS Inc., Chicago, USA). 

Statistical Analysis 

 

Results 

 Six participants in the RBS group and four participants in the BB group dropped out of 
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the study and the remaining 38 athletes completed the study. Each athlete who did not complete the 

study quit the club for unrelated reasons. The athletes in the two groups showed similar baseline 

characteristics, and there were no significant differences between the two groups (Table 5-1). 

During the 29-week study period, a total of six LAS were recorded. All injuries were noncontact 

recurrent LAS. The injury mechanisms are shown in Table 5-2. Four LAS occurred in the RBS 

group and two LAS occurred in the BB group (2.057 per 1000 athlete-exposures vs. 0.647 per 1000 

athlete-exposures, RR 1.692, 95%CI [0.342, 8.379]), there were no significant differences in 

exposure between the two groups (Figure 5-11). 

 

Discussion 

The purpose of this study was to develop an original specific-component exercise 

program that would effectively reduce the incidence of initial and recurrent LAS in order to create 

an effective and efficient prevention program. Thirty-eight athletes completed the study; six LAS 

occurred, four in the RBS group and two in the BB group. There were no significant differences 

between the two groups. 

The incidence of LAS shows large differences between sports activities. Hootman et al. 

(Hootman et al., 2007) reported a high incidence in basketball, soccer, and volleyball players of 
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both genders. Previous studies showed the incidence of noncontact LAS was 0.21-1.13 per 1000 

athlete-exposures. (Fousekis et al., 2012; Hiller et al., 2008; McHugh et al., 2006; Tyler et al., 

2006) Among these studies, high incidences were reported by McHugh et al. (McHugh et al., 2006) 

and Tyler et al. (Tyler et al., 2006) whose respective subjects were basketball and soccer players; in 

contrast, the incidence was lower in the study by Hiller et al. (Hiller et al., 2008) whose subjects 

were ballet dancers. Thus, the incidence of LAS tends to vary depending on the sports that the 

subjects participate in. Subjects in this study participated in volleyball or badminton, both of which 

show a high incidence of LAS; therefore, the incidence of LAS in this study was expected to be 

high. 

McGuine et al. (McGuine and Keene, 2006) reported the incidence of ankle sprain in high 

school basketball and soccer players following a BB program was 1.13 per 1000 athlete-exposures. 

In addition, McHugh et al. (McHugh et al., 2007) showed the incidence of LAS for athletes with 

increased risk was 2.2 per 1000 athlete-exposures before the BB program intervention and 0.5 after 

intervention. The results of this study supported these previous studies (the BB group; 0.647 per 

1000 athlete-exposures). Although the RBS group showed a higher incidence than the BB group, 

there was no significant difference. Many studies have indicated that the BB program significantly 

reduces the risk of recurrent LAS. (Emery et al., 2005; Hupperets et al., 2009; Janssen et al., 2011; 
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McGuine and Keene, 2006; van der Wees et al., 2006; Verhagen et al., 2004; Verhagen et al., 2000; 

Verhagen et al., 2005) Thus, it is considered that the RBS program effects were equivalent to those 

of the BB program. However, all LAS in this study were recurrent and we could not evaluate the 

preventive effect on initial LAS since most subjects had a history of LAS. It will be necessary to 

consider the preventive effect on initial LAS in a study of adolescent athletes without previous 

LAS in a future study. 

This study was designed as a randomized control trial to compare the effects of two 

intervention programs on preventing LAS. All programs were managed by the trainers.  

Athlete-exposures and injury data were collected on campus by a physical therapist, which further 

improves data reliability. However, this study focused on collegiate athletes and these results may 

not be applicable to adolescent athletes or elderly people, or to different sports. This study also has 

some limitations. First is the insufficient number of subjects, and more than 80% of subjects had a 

history of LAS. Therefore, it was not possible to evaluate the preventive effect on initial LAS. 

Furthermore, it is thought that the relatively low intervention frequency might have influenced the 

outcome. 

 During the 29-week intervention among the 38 collegiate athletes who completed the 

study, the incidence of noncontact LAS was 2.057 per 1000 athlete-exposures in the RBS group 
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and 0.647 per 1000 athlete-exposures in the BB group. There was no significant difference between 

the two groups. This suggests that the effects of the RBS program are equivalent to those of the BB 

program. An investigation of higher frequency interventions focusing on adolescent athletes should 

be performed in the future. 
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Figure 5-6: Subtalar internal rotation during ankle internal rotation in plantar flexion. 

A sandal-like balancing device worn by athletes allows them to perform a variety of weightbearing exercises 

including stepping and jumping. 
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Figure 5-7: Flowchart of the protocol of this study. 
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Figure 5-8: Example of a slow closed kinetic chain strengthening exercise using the ReaLine 

Balanceshoes. 

(a) squatting, (b) stepping, (c) landing. 
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Figure 5-9: The Balance Board. 
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Figure 5-10: Example of balance exercise using the balance board. 

(a) exercise without additional equipment, (b) exercise with a BB only, (c) exercise with a ball and BB 

squatting. 
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Figure 5-11: A comparison of incidence of LAS by intervention group. 
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Table 5-1: Demographic data of the subjects. 
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Table 5-2: Characteristics of injuries recorded in the study. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 
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 Lateral ankle sprain shows very high injury and recurrence rates. (Fong et al., 2007) 

Since some cases develop osteoarthritis and require surgical treatment, economic or social costs are 

large. (Harrington, 1979; Lofvenberg et al., 1994; Povacz et al., 1998) Therefore, the development 

of an effective LAS prevention program is required. Although many investigations have been 

performed to identify predictive/contributing factors of LAS or CAI, there is continuing 

controversy. This may be why an effective prevention program has not yet been developed. Under 

such circumstances, we investigated abnormal ankle alignment and kinematics, which are 

frequently observed in subjects with CAI. Our studies demonstrated that these abnormalities 

contribute to the occurrence of LAS and progression to CAI.  

 The prospective study indicated that abnormal talocrural kinematics predicts initial or 

recurrent LAS. In addition, the results of cross-sectional studies demonstrated the presence of 

abnormal alignment or kinematics in the distal tibiofibular joint, the talocrural joint and the subtalar 

joint and that these abnormalities may contribute to frequent giving-way or the development of 

osteoarthritis. The measurement and analytical methods adopted in this study have excellent 

reproducibility and reliability. Furthermore, we were able to detect abnormalities in the AJC in 

greater detail than previously demonstrated. 

 Through the results of these studies, it was proven that abnormal alignment or 
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kinematics in the AJC contribute to the occurrence of LAS as well as the development of CAI and 

osteoarthritis. A further longitudinal study is needed to determine whether abnormal contact 

mechanics can cause osteoarthritis. Furthermore, we should develop treatment and prevention 

programs that improve or ameliorate these abnormalities, then perform a prospective study to 

evaluate the effects in the future. We hope the new findings on LAS or CAI obtained from these 

studies are beneficial in the treatment of many patients with lateral ankle sprain. 
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